In this work, we synthesized uniform Cu-Ag core-shell nanoparticles using a facile two-step process that consists of thermal decomposition and galvanic displacement methods. The core-shell structure of these nanoparticles was confirmed through characterization using transmission electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Furthermore, we investigated the oxidation stability of the Cu-Ag core-shell nanoparticles in detail. Both qualitative and quantitative x-ray photoelectron spectroscopy analyses confirm that the Cu-Ag core-shell nanoparticles have considerably higher oxidation stability than Cu nanoparticles. Finally, we formulated a conductive ink using the synthesized nanoparticles and coated it onto glass substrates. Following the sintering process, we compared the resistivity of the Cu-Ag core-shell nanoparticles with that of the Cu nanoparticles. The results of this study clearly show that the Cu-Ag core-shell nanoparticles can potentially be used as an alternative to Ag nanoparticles because of their superior oxidation stability and electrical properties.
Acetic acid (AA) has been employed to reduce the surface capping ligands of Ag nanoparticles (NPs) for the fabrication of low-temperature-processable and highly conductive Ag ink. The ligand reduction of the Ag NPs was achieved using a one-step method, in which oleylamine (OA)-capped Ag NPs were immersed in AA for different durations (1, 2, 3, 5 and 10 h). The weight of the total capping ligand was reduced from 12.1 wt% to 2.3 wt% by 10 h AA immersion. According to in situ transmission electron microscopy (TEM) and electrical resistivity, the ligand-reduced Ag NPs were cured at a much lower temperature (approximately 100 C) and showed better electrical performance than OA-capped NPs under the same conditions. To investigate the reason for this enhancement of the electrical properties, we characterized the surface chemistry of the Ag NPs by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), which revealed that the surface capping ligand was exchanged from the OA to the acetate ion. In addition, the adsorption energy of the ligand was increased by the ligand exchange, which was studied using density functional theory (DFT) calculations. DFT was effective in explaining the adsorption of each ligand on Ag NPs and indicated that the ligand can be exchanged by AA immersion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.