In this paper, we consider a generalized kernel smoothing estimator of the regression function with non-negative support, using gamma probability densities as kernels, which are nonnegative and have naturally varying shapes. It is based on a generalization of Hille's lemma and a perturbation idea that allows us to deal with the problem at the boundary. Its uniform consistency and asymptotic normality are obtained at interior and boundary points, under a stationary ergodic process assumption, without using traditional mixing conditions. The asymptotic mean squared error of the estimator is derived and the optimal value of smoothing parameter is also discussed. Graphical illustrations of the proposed estimator are provided for simulated as well as for real data. A simulation study is also carried out to compare our method with the competing local linear method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.