Graphene is a two dimensional one atom thick allotrope of carbon that displays unusual crystal structure, electronic characteristics, charge transport behavior, optical clarity, physical & mechanical properties, thermal conductivity and much more that is yet to be discovered. Consequently, it has generated unprecedented excitement in the scientific community; and is of great interest to wide ranging industries including semiconductor, optoelectronics and printed electronics. Graphene is considered to be a next-generation conducting material with a remarkable band-gap structure, and has the potential to replace traditional electrode materials in optoelectronic devices. It has also been identified as one of the most promising materials for post-silicon electronics. For many such applications, modulation of the electrical and optical properties, together with tuning the band gap and the resulting work function of zero band gap graphene are critical in achieving the desired properties and outcome. In understanding the importance, a number of strategies including various functionalization, doping and hybridization have recently been identified and explored to successfully alter the work function of graphene. In this review we primarily highlight the different ways of surface modification, which have been used to specifically modify the band gap of graphene and its work function. This article focuses on the most recent perspectives, current trends and gives some indication of future challenges and possibilities.
We report a unique and facile way of preparing silk fibroin gel by ruthenium-mediated photocrosslinking of silk solution. Compared to existing methods, this approach is faster, taking only a few minutes to form the gel with tunable modulus. Hydrogels demonstrate their potential suitability as biomaterials for tissue engineering applications.
The use of additive manufacturing (AM) has moved well beyond prototyping and has been established as a highly versatile manufacturing method with demonstrated potential to completely transform traditional manufacturing in the future. In this paper, a comprehensive review and critical analyses of the recent advances and achievements in the field of different AM processes for polymers, their composites and nanocomposites, elastomers and multi materials, shape memory polymers and thermo-responsive materials are presented. Moreover, their applications in different fields such as bio-medical, electronics, textiles, and aerospace industries are also discussed. We conclude the article with an account of further research needs and future perspectives of AM process with polymeric materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.