Background: Intraoperative imaging addresses the limitations of frameless neuronavigation systems by providing real-time image updates. With the advent of new multidetector intraoperative computed tomography (CT), soft tissue can be visualized far better than before. We report the early departmental experience of our intraoperative CT scanner’s use in a wide range of technically challenging neurosurgical cases. Methods: We retrospectively analyzed the data of all patients in whom intraoperative CT scanner was utilized. Out of 31 patients, 24 (77.4%) were cranial and 8 (22.6%) spinal cases. There were 13 male (41.9%) and 18 (58.1%) female patients, age ranged from 1 to 83 years with a mean age of 34.29 years ±17.54 years. Seven patients underwent spinal surgery, 2 cases were of orbital tumors, and 16 intra-axial brain tumors, including 5 low- grade gliomas, 10 high-grade gliomas, and 1 colloid cyst. There were four sellar lesions and two multiloculated hydrocephalus. Results: The intraoperative CT scan guided us to correct screw placement and was crucial in managing four complex spinal instabilities. In intracranial lesions, 59% of cases were benefitted due to intraoperative CT scan. It helped in the precise placement of ventricular catheter in multiloculated hydrocephalus and external ventricular drain for a third ventricular colloid cyst. Conclusion: Intraoperative CT scan is safe and logistically and financially advantageous. It provides versatile benefits allowing for safe and maximal surgery, requiring minimum changes to an existing neurosurgical setup. Intraoperative CT scan provides clinical benefit in technically difficult cases and has a smooth workflow.
Lhermitte-Duclos Disease (LDD) is an extremely rare hamartoma of the cerebellum and is associated with the cancer syndrome Cowden’s disease. We report such a patient whose disease was diagnosed incidental to traumatic brain injury. A 40-year-old male presented after fall from stairs. CT scan revealed a large lesion in the right cerebellar hemisphere. Clinical history recounted multiple short episodes of vomiting (>10 a week) for the past 30 years and development of posterior fossa symptoms over the recent months. Neither of these had him referred due to lack of access to primary healthcare. T1 MRI with contrast showed an isointense focal mass, enhancement along the folia, and distortion of the 4th ventricle. On T2 MRI, tiger striped appearance was noted. Endoscopic third ventriculostomy was performed followed by gross total resection of the hamartoma. Histology confirmed LDD. All reported symptoms resolved following surgery. Due to lack of access to the expensive genetic testing for Cowden’s he is in regular biannual follow up to be evaluated clinically for associated malignancies. We present this case to highlight the clinical-pathological characteristics of LDD, its treatment, and discuss management in the absence of genetic testing in our socio-economic demographic.
Background: Polymethyl methacrylate (PMMA) cranioplasty, while widely prevalent, has limitations associated with freehand manual intraoperative molding. PMMA has been superseded by titanium or Polyetheretherketone implants, prefabricated commercially from preoperative CT scans, and boasting superior clinical and cosmetic outcomes. However, such services are extremely inaccessible and unaffordable in the lower-middle-income country (LMIC) settings. The study aims to describe, in detail, the process of making ultra-low-cost patient-specific PMMA cranioplasty implants with minimum resources using open-access software. We report the first such service from the public health-care system within Pakistan, a LMIC. Methods: Using open-source software, preoperative CT heads were used to prefabricate three-dimensional implants. Both implant and cranial defects were printed using polylactic acid (PLA) to assess the implant’s size and fit preoperatively. From the PLA implant, we fashioned a silicon mold that shapes the PMMA implant. Ten patients who underwent cranioplasty using our technique for various cranial defects with at least a 12-month follow-up were retrospectively reviewed. Clinical, cosmetic, and radiological outcomes were objectively assessed. Results: Etiology of injury was trauma (8), malignant MCA infarct (1), and arteriovenous fistula (1). We produced seven frontotemporal-parietal implants, one bifrontal, one frontal, and one frontoparietal. At 1 year, eight patients reported their cosmetic appearance comparable to before the defect. Radiological outcome was classified as “excellent” for eight patients. No postoperative complications were encountered, nor did any implant have to be removed. One patient’s implant involving the orbital ridge had an unsatisfactory cosmetic outcome and required revision surgery. The average cost per implant to the National Health Service was US$40. Conclusion: Prefabricated patient-specific PMMA cranioplasty implants are cost-effective. A single surgeon can fashion them in a limited resource setting and provide personalized medicine with excellent clinical/cosmetic-radiological results. Our method produces patient-specific cranioplasty implants in an otherwise unaffordable LMIC setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.