Bulking treatment with low molecular weight phenol formaldehyde (LmwPF) resin has been found to successfully enhance the properties of low-density wood but emit higher formaldehyde. Incorporation of nanoparticle to the phenolic matrix could possibly reduce the use of high concentration LmwPF and thus lower the formaldehyde emission (FE) without adversely affecting the other properties. The aim of the study was to examine the characteristics of LmwPF resin and nanoclay admixture and determine its effects on the performance of impreg wood. Montmorillonite nanoclay nanomer (0.5-1.5 % w/w based on solid PF) was dispersed in LmwPF resin (10-20 % w/v) using ultrasonication technique. The dispersion of nanoclay in LmwPF was examined using X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). XRD and TEM analyses confirmed that the nanoclay dispersion in the resin was in exfoliated form. Air-dried sesenduk (Endospermum diadenum) wood was impregnated with these admixtures using vacuum pressure process followed by curing at 150°C for 30 min. The FE, dimensional stability and strength properties were evaluated and compared with impreg wood treated solely with LmwPF. The results showed that the polymer retention and density of the LmwPF/nanoclay-impregnated samples were higher than the LmwPF-impregnated samples. This admixture had successfully bulked the cell wall of the wood and imparted higher dimensional stability to the treated wood. The modulus of rupture and modulus of elasticity, compressive stress and hardness & Zaidon Ashaari
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.