Background: Glaucoma is a major public health problem that can lead to an optic nerve lesion, requiring systematic screening in the population over 45 years of age. The diagnosis and classification of this disease have had a marked and excellent development in recent years, particularly in the machine learning domain. Multimodal data have been shown to be a significant aid to the machine learning domain, especially by its contribution to improving data driven decisionmaking. Method: Solving classification problems by combinations of classifiers has made it possible to increase the robustness as well as the classification reliability by using the complementarity that may exist between the classifiers. Complementarity is considered a key property of multimodality. A Convolutional Neural Network (CNN) works very well in pattern recognition and has been shown to exhibit superior performance, especially for image classification which can learn by themselves useful features from raw data. This article proposes a multimodal classification approach based on deep Convolutional Neural Network and Support Vector Machine (SVM) classifiers using multimodal data and multimodal feature for glaucoma diagnosis from retinal fundus images from RIM-ONE dataset. We make use of handcrafted feature descriptors such as the Gray Level Co-Occurrence Matrix, Central Moments and Hu Moments to cooperate with features automatically generated by the CNN in order to properly detect the optic nerve and consequently obtain a better classification rate, allowing a more reliable diagnosis of glaucoma. Results: The experimental results confirm that the combination of classifiers using the BWWV technique is better than learning classifiers separately. The proposed method provides a computerized diagnosis system for glaucoma disease with impressive results comparing them to the main related studies that allow us to continue in this research path.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.