Mortars are subjected to severe external stresses such as freezing, thawing, and drying during their lifetime. These stresses can lead to a loss of adhesion between the support and the mortar. The strength of the substrates with respect to their ability to receive a coating (mortar) is characterized in particular by the value of minimum tear resistance of the surface to be coated. In this work, the use of a non-destructive method which is both fast and easy to implement is employed to evaluate this support-mortar adhesion. The first method is based on the measurement of the velocities of the surface ultrasonic waves and the second by tearing tests using a specific dynamometer. The determination of the adhesion strength concerned two different supports (concrete beam and masonry block) coated with two types of mortar (a prepared cement mortar and a ready-to-use mortar) with two different thicknesses for each mortar (1 and 2 cm, respectively). The results of the two methods are then correlated for an estimation of the adhesion of the mortars.
The South of Algeria is known for these immense sand dunes, which cover part of its territory (Sahara). The main objective of this study is the recovery of sands dune and wood waste (sawdust). The latter, which constitutes a potential source of several environmental and economic problems. The objective of this present work is to characterize the physico-mechanical properties at a young age of a dune sand-based mortar lightened by wood waste and to examine the suitability of using it for various applications in the construction of buildings. The improvement of the characteristics of these sands, which essentially formed of sand untapped to date and with the sole aim of enhancing this national sand wealth. The formulation of the mixtures is based on the substitution of dune sand by sawdust, at different weight contents 0, 10, 20 and 30%. The quantity of cement is fixed at 450 g. The results obtained show firstly that the introduction of sawdust improves the characteristics of the mixture (grain size tends to be spread out, reduction in densities), and secondly the physico-mechanical characteristics, especially at 30% substitution (reduction absorption by total immersion of 20.50%, porosity of 28.32%, wet density of 1.73% and dry density of 14.94% and increase in tensile strength of 61.43% and in compression of 63.87%). The effect of sawdust on the relationships between the properties of mortars was clearly noted either for the relationships between early strengths or between compressive and tensile strengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.