Although much progress has been made in the facial expression analysis field, facial occlusions are still challenging. The main innovation brought by this contribution consists in exploiting the specificities of facial movement propagation for recognizing expressions in presence of important occlusions. The movement induced by an expression extends beyond the movement epicenter. Thus, the movement occurring in an occluded region propagates towards neighboring visible regions. In presence of occlusions, per expression, we compute the importance of each unoccluded facial region and we construct adapted facial frameworks that boost the performance of per expression binary classifier. The output of each expression-dependant binary classifier is then aggregated and fed into a fusion process that aims constructing, per occlusion, a unique model that recognizes all the facial expressions considered. The evaluations highlight the robustness of this approach in presence of significant facial occlusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.