This paper explores the full control of a quadrotor Unmanned Aerial Vehicles (UAVs) byexploiting the nature-inspired algorithms of Particle Swarm Optimization (PSO), Cuckoo Search(CS), and the cooperative Particle Swarm Optimization-Cuckoo Search (PSO-CS). The proposedPSO-CS algorithm combines the ability of social thinking in PSO with the local search capability inCS, which helps to overcome the problem of low convergence speed of CS. First, the quadrotordynamic modeling is defined using Newton-Euler formalism. Second, PID (Proportional, Integral,and Derivative) controllers are optimized by using the intelligent proposed approaches and theclassical method of Reference Model (RM) for quadrotor full control. Finally, simulation resultsprove that PSO and PSO-CS are more efficient in tuning of optimal parameters for the quadrotorcontrol. Indeed, the ability of PSO and PSO-CS to track the imposed trajectories is well seen from3D path tracking simulations and even in presence of wind disturbances.
This paper presents the dynamic modelling and control technique for a tilt-rotor aerial vehicle operating in bi-rotor mode. This kind of aircraft combines two flight envelopes, making it ideal for scenarios that require hovering, vertical take-off/landing and fixed-wing capabilities. In this work, a detailed mathematical model is derived using Newton-Euler formalism. Based on the obtained model, a new control scheme that incorporates six Proportional-Derivative (PD) controllers is proposed for the attitudes (roll (φ), pitch (θ), yaw (ψ)) and the positions (x, y, z) of the aircraft. Then, intelligent Particle Swarm Optimization (PSO) and conventional Reference Model (RM) techniques are applied for optimal tuning of the controllers' parameters. The stability analysis is developed using the Lyapunov approach and its application to the tilt-rotor system in the case of intelligent and conventional PD controllers. Numerical results of two scenarios prove the efficiency of the controllers tuned using the PSO method. Indeed, its ability to track the desired trajectories is demonstrated through 3D path tracking simulations, even in the presence of wind disturbances. Finally, experimental tests of stabilization and trajectory tracking are carried out on our prototype. These testing showed that our tilt-rotor was stable and suitably follows the imposed trajectories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.