We explore the consequences of representing token segmentations as hierarchical structures (trees) for the task of Multiword Expression (MWE) recognition, in isolation or in combination with dependency parsing. We propose a novel representation of token segmentation as trees on tokens, resembling dependency trees. Given this new representation, we present and evaluate two different architectures to combine MWE recognition and dependency parsing in the easy-first framework: a pipeline and a joint system, both taking advantage of lexical and syntactic dimensions. We experimentally validate that MWE recognition significantly helps syntactic parsing.
We present a generalized discriminative model for spelling error correction which targets character-level transformations. While operating at the character level, the model makes use of wordlevel and contextual information. In contrast to previous work, the proposed approach learns to correct a variety of error types without guidance of manuallyselected constraints or language-specific features. We apply the model to correct errors in Egyptian Arabic dialect text, achieving 65% reduction in word error rate over the input baseline, and improving over the earlier state-of-the-art system.
Sequential pattern mining is one of the most studied and challenging tasks in data mining. However, the extension of well-known methods from many other classical patterns to sequences is not a trivial task. In this paper we study the notion of δ-freeness for sequences. While this notion has extensively been discussed for itemsets, this work is the first to extend it to sequences. We define an efficient algorithm devoted to the extraction of δ-free sequential patterns. Furthermore, we show the advantage of the δ-free sequences and highlight their importance when building sequence classifiers, and we show how they can be used to address the feature selection problem in statistical classifiers, as well as to build symbolic classifiers which optimizes both accuracy and earliness of predictions.
This paper describes the system used by the LIPN team in the task 10, Multilingual Semantic Textual Similarity, at SemEval 2014, in both the English and Spanish sub-tasks. The system uses a support vector regression model, combining different text similarity measures as features. With respect to our 2013 participation, we included a new feature to take into account the geographical context and a new semantic distance based on the Bhattacharyya distance calculated on cooccurrence distributions derived from the Spanish Google Books n-grams dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.