How rudimentary movements evolve into sophisticated ones during development remains unclear. It is often assumed that the primitive patterns of neural control are suppressed during development, replaced by entirely new patterns. Here we identified the basic patterns of lumbosacral motoneuron activity from multimuscle recordings in stepping neonates, toddlers, preschoolers, and adults. Surprisingly, we found that the two basic patterns of stepping neonates are retained through development, augmented by two new patterns first revealed in toddlers. Markedly similar patterns were observed also in the rat, cat, macaque, and guineafowl, consistent with the hypothesis that, despite substantial phylogenetic distances and morphological differences, locomotion in several animal species is built starting from common primitives, perhaps related to a common ancestral neural network.
Regaining Limb Movement
Despite many years of intensive research, there is still an urgent need for novel treatments to help patients restore motor function after spinal cord injuries.
van den Brand
et al.
(p.
1182
) produced left and right hemisections at different levels of the rat thoracic spinal cord to cause complete hind limb paralysis mimicking the situation in humans with spinal cord injury. Systemic application of pharmacological agents, combined with a multisystem rehabilitation program including a robotic postural neuroprosthesis, restored voluntary movements of both hind limbs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.