As part of the basic characterization of Ornithobacterium rhinotracheale, the minimal inhibitory concentrations of 10 antimicrobial drugs were determined for reference strains and Mexican isolates by a broth microdilution method. For optimal growth of the organisms, a supplemented brain-heart infusion broth was used. The susceptibility of O. rhinotracheale to amoxicillin, enrofloxacin, and oxytetracycline was variable. However, consistent higher minimal inhibitory concentrations values were obtained for gentamicin, fosfomycin, trimethoprim, sulfamethazine, sulfamerazine, sulfaquinoxaline, and sulfachloropyridazine. Obtained results among Mexican isolates indicate a marked antimicrobial drug resistance trend.
Aguas Calientes (AC) is an isolated geothermal spring located deep into the Amazon rainforest (7°21′12″ S, 75°00′54″ W) of Peru. This geothermal spring is slightly acidic (pH 5.0–7.0) in nature, with temperatures varying from 45 to 90 °C and continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC). Pooled water sample was analyzed at 16S rRNA V3–V4 hypervariable region by amplicon metagenome sequencing on Illumina HiSeq platform. A total of 2,976,534 paired ends reads were generated which were assigned into 5434 numbers of OTUs. All the resulting 16S rRNA fragments were then classified into 58 bacterial phyla and 2 archaeal phyla. Proteobacteria (88.06%) was found to be the highest represented phyla followed by Thermi (6.43%), Firmicutes (3.41%) and Aquificae (1.10%), respectively. Crenarchaeota and Euryarchaeota were the only 2 archaeal phyla detected in this study with low abundance. Metagenomic sequences were deposited to SRA database which is available at NCBI with accession number SRX1809286. Functional categorization of the assigned OTUs was performed using PICRUSt tool. In COG analysis “Amino acid transport and metabolism” (8.5%) was found to be the highest represented category whereas among predicted KEGG pathways “Metabolism” (50.6%) was the most abundant. This is the first report of a high resolution microbial phylogenetic profile of an Amazonian hot spring.
Alkaline cellulase producing fungi were isolated from soils of an undisturbed rain forest of Peru. The soil dilution plate method was used for the enumeration and isolation of fast growing cellulolytic fungi on an enriched selective medium. Eleven out of 50 different morphological colonies were finally selected by using the plate clearing assay with CMC as substrate at different pH values. All 11 strains produced cellulases in liquid culture with activities at alkaline pH values without an apparent decrease of them indicating that they are true alkaline cellulase producers. Aspergillus sp. LM-HP32, Penicillium sp. LM-HP33, and Penicillium sp. LM-HP37 were the best producers of FP cellulase (>3 U mL−1) with higher specific productivities (>30 U g−1 h−1). Three strains have been found suitable for developing processes for alkaline cellulase production. Soils from Amazonian rain forests are good sources of industrial fungi with particular characteristics. The results of the present study are of commercial and biological interest. Alkaline cellulases may be used in the polishing and washing of denim processing of the textile industry.
The textile industry creates environmental problems due to the release of highly polluting effluents containing substances from different stages of dyeing that are resistant to light, water, and various chemicals, and most of them are difficult to decolorize because of its synthetic origin. The biological degradation of dyes is an economical and environmentally friendly alternative. The aim of this work was to use biofilms of basidiomycete fungi isolated from the Peruvian rainforest for the decolorization of synthetic reactive dyes, considering the advantages of these systems which include better contact with the surrounding medium, resistance to chemical and physical stress, and higher metabolic activity. Among several isolates, two were selected for their capacity of rapid decolorization of several dyes and their biofilm-forming ability. These strains were molecularly identified as Trametes polyzona LMB-TM5 and Ceriporia sp. LMB-TM1 and used in biofilm cultivation for the decolorization of six reactive dyes and textile effluents. Azo dyes were moderately decolorized by both strains, but Remazol Brilliant Blue R (anthraquinone) and Synozol Turquoise Blue HF-G (phthalocyanine) were highly decolorized (97 and 80 %, respectively) by T. polyzona LMB-TM5. Degradation products were found by HPLC analysis. Simulated effluents made of a mixture of six dyes were moderately decolorized by both strains, but a real textile effluent was highly (93 %) decolorized by T. polyzona LMB-TM5. In summary, T. polyzona LMB-TM5 was more efficient than Ceriporia sp. LMB-TM1 for the decolorization of textile dyes and effluents at high initial rates enabling the development of in-plant continuous biofilm processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.