More than half of the solar energy absorbed by land surfaces is currently used to evaporate water(1). Climate change is expected to intensify the hydrological cycle(2) and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale. Until such evidence is available, changes in the water cycle on land-a key diagnostic criterion of the effects of climate change and variability-remain uncertain. Here we provide a data-driven estimate of global land evapotranspiration from 1982 to 2008, compiled using a global monitoring network(3), meteorological and remote-sensing observations, and a machine-learning algorithm(4). In addition, we have assessed evapotranspiration variations over the same time period using an ensemble of process-based land-surface-models. Our results suggest that global annual evapotranspiration increased on average by 7.1 +/- 1.0 millimetres per year per decade from 1982 to 1997. After that, coincident with the last major El Nino event in 1998, the global evapotranspiration increase seems to have ceased until 2008. This change was driven primarily by moisture limitation in the Southern Hemisphere, particularly Africa and Australia. In these regions, microwave satellite observations indicate that soil moisture decreased from 1998 to 2008. Hence, increasing soil-moisture limitations on evapotranspiration largely explain the recent decline of the global land-evapotranspiration trend. Whether the changing behaviour of evapotranspiration is representative of natural climate variability or reflects a more permanent reorganization of the land water cycle is a key question for earth system science
[1] We upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes to the global scale using the machine learning technique, model tree ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5°× 0.5°spatial resolution and a monthly temporal resolution from 1982 to 2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were not as strong (MEf between 0.29 and 0.52). Improved accounting of disturbance and lagged environmental effects, along with improved characterization of errors in the training data set, would contribute most to further reducing uncertainties. Our global estimates of LE (158 ± 7 J × 10 18 yr −1 ), H (164 ± 15 J × 10 18 yr −1), and GPP (119 ± 6 Pg C yr ) were similar to independent estimates. Our global TER estimate (96 ± 6 Pg C yr −1 ) was likely underestimated by 5-10%. Hot spot regions of interannual variability in carbon fluxes occurred in semiarid to semihumid regions and were controlled by moisture supply. Overall, GPP was more important to interannual variability in NEE than TER. Our empirically derived fluxes may be used for calibration and evaluation of land surface process models and for exploratory and diagnostic assessments of the biosphere.
We use eddy covariance measurements of net ecosystem productivity (NEP) from 21 FLUXNET sites (153 site-years of data) to investigate relationships between phenology and productivity (in terms of both NEP and gross ecosystem photosynthesis, GEP) in temperate and boreal forests. Results are used to evaluate the plausibility of four different conceptual models. Phenological indicators were derived from the eddy covariance time series, and from remote sensing and models. We examine spatial patterns (across sites) and temporal patterns (across years); an important conclusion is that it is likely that neither of these accurately represents how productivity will respond to future phenological shifts resulting from ongoing climate change. In spring and autumn, increased GEP resulting from an 'extra' day tends to be offset by concurrent, but smaller, increases in ecosystem respiration, and thus the effect on NEP is still positive. Spring productivity anomalies 3227This journal is q 2010 The Royal Society on May 11, 2018 http://rstb.royalsocietypublishing.org/ Downloaded from appear to have carry-over effects that translate to productivity anomalies in the following autumn, but it is not clear that these result directly from phenological anomalies. Finally, the productivity of evergreen needleleaf forests is less sensitive to phenology than is productivity of deciduous broadleaf forests. This has implications for how climate change may drive shifts in competition within mixedspecies stands.
[1] In the tropics and subtropics, most fires are set by humans for a wide range of purposes. The total amount of burned area and fire emissions reflects a complex interaction between climate, human activities, and ecosystem processes. Here we used satellite-derived data sets of active fire detections, burned area, precipitation, and the fraction of absorbed photosynthetically active radiation (fAPAR) during [1998][1999][2000][2001][2002][2003][2004][2005][2006] to investigate this interaction. The total number of active fire detections and burned area was highest in areas that had intermediate levels of both net primary production (NPP; 500-1000 g C m À2 year À1 ) and precipitation (1000-2000 mm year À1 ), with limits imposed by the length of the fire season in wetter ecosystems and by fuel availability in drier ecosystems. For wet tropical forest ecosystems we developed a metric called the fire-driven deforestation potential (FDP) that integrated information about the length and intensity of the dry season. FDP partly explained the spatial and interannual pattern of fire-driven deforestation across tropical forest regions. This climate-fire link in combination with higher precipitation rates in the interior of the Amazon suggests that a negative feedback on fire-driven deforestation may exist as the deforestation front moves inward. In Africa, compared to the Amazon, a smaller fraction of the tropical forest area had FDP values sufficiently low to prevent fire use. Tropical forests in mainland Asia were highly vulnerable to fire, whereas forest areas in equatorial Asia had, on average, the lowest FDP values. FDP and active fire detections substantially increased in forests of equatorial Asia, however, during El Niño periods. In contrast to these wet ecosystems we found a positive relationship between precipitation, fAPAR, NPP, and active fire detections in arid ecosystems. This relationship was strongest in northern Australia and arid regions in Africa. Highest levels of fire activity were observed in savanna ecosystems that were limited neither by fuel nor by the length of the fire season. However, relations between annual precipitation or drought extent and active fire detections were often poor here, hinting at the important role of other factors, including land managers, in controlling spatial and temporal variability of fire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.