[1] The scientific community interested in atmospheric chemistry, gas emissions from vegetation fires, and carbon cycling is currently demanding information on the extent and timing of biomass burning at the global scale. In fact, the area and type of vegetation that is burned on a monthly or annual basis are two of the parameters that provide the greatest uncertainty in the calculation of gas and aerosol emissions and burned biomass. To address this need, an inventory of burned areas at monthly time periods for the year 2000 at a resolution of 1 km 2 has been produced using satellite data and has been made freely available to the scientific community. In this paper, estimates of burned area and number of burn scars for four broad vegetation classes and reported at the country level for the year 2000 are presented using data taken from the inventory. Over 3.5 million km 2 of burned areas were detected in the year 2000, of which approximately 80% occurred in areas described as woodlands and shrublands. Approximately 17% of the burned area occurred in grasslands and croplands, the remaining 3% occurred in forests. Almost 600,000 separate burn scars were detected. Descriptions of vegetation burning activity are given for ten regions. Finally, monthly burned area estimates are presented for the Central African Republic to illustrate the usefulness of these data for understanding, monitoring and managing vegetation burning activities.
This paper discusses the trade-off between accuracy, reliability and computing time in global optimization. Particular compromises provided by traditional methods (Quasi-Newton and Nelder-Mead's simplex methods) and genetic algorithms are addressed and illustrated by a particular application in the field of nonlinear system identification. Subsequently, new hybrid methods are designed, combining principles from genetic algorithms and "hill-climbing" methods in order to find a better compromise to the trade-off. Inspired by biology and especially by the manner in which living beings adapt themselves to their environment, these hybrid methods involve two interwoven levels of optimization, namely evolution (genetic algorithms) and individual learning (Quasi-Newton), which cooperate in a global process of optimization. One of these hybrid methods appears to join the group of state-of-the-art global optimization methods: it combines the reliability properties of the genetic algorithms with the accuracy of Quasi-Newton method, while requiring a computation time only slightly higher than the latter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.