The structure of the 5' domain of yeast 18S rRNA has been probed by dimethyl sulfate (DMS), either in "native" deproteinized molecules or in the 40S ribosomal subunits. DMS-reacted RNA has been used as a template for reverse transcription and a large number of reactive sites, corresponding to all types of bases have been mapped by a primer extension procedure, taking advantage of blocks in cDNA elongation immediately upstream from bases methylated at atom positions involved in the base-pair recognition of the template. Since the same atom positions are protected from DMS in base-paired nucleotides, the secondary structure status of each nucleotide can be directly assessed in this procedure, thus allowing to evaluate the potential contribution of proteins in modulating subunit rRNA conformation. While the DMS probing of deproteinized rRNA confirms a number of helical stems predicted by phylogenetic comparisons, it is remarkable that a few additional base-pairings, while proven by the comparative analysis, appear to require the presence of the bound ribosomal subunit proteins to be stabilized.
Structural features of the tRNAPhe molecule upon ternary complex formation with the bacterial elongation factor Tu were investigated. Phosphodiester bonds at positions 18 and 34 were found to be labilized in bound tRNA. Conversely, a higher stability of the phosphodiester links at positions 20, 21 and 36 was detected. Using ethylnitrosourea as a chemical probe a conformational change occurring at phosphate position 53 was observed in complexed tRNA. These results are interpreted by a structural rearrangement of the nucleic acid induced by complex formation.
Elongation factor TuAminoacyl-tRNA
Treatment of yeast phenylalanine tRNA with pressurized hydrogen sulfide results in conversion of cytidine residues into 4-thiouridine residues. Under conditions leading to an average modification of one cytidine per tRNA molecule 9 positions are thiolated. The 4-thiouridine residues are distributed along the tRNA molecule. Four of the reactive cytidines are located in single-stranded regions: Cm32 , C60 , C74 and C75 . The five others are located in base pairs: C2, C27, C56 , C61 and C63 . Importance of replacement of an amino group by a thiol group on hydrogen bonding and on biological activity of the modified tRNA is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.