BackgroundNorway spruce is widely distributed across Europe and the predominant tree of the Alpine region. Fast growth and the fact that timber can be harvested cost-effectively in relatively young populations define its status as one of the economically most important tree species of Northern Europe. In this study, EST derived simple sequence repeat (SSR) markers were developed for the assessment of putative functional diversity in Austrian Norway spruce stands.ResultsSSR sequences were identified by analyzing 14,022 publicly available EST sequences. Tri-nucleotide repeat motifs were most abundant in the data set followed by penta- and hexa-nucleotide repeats. Specific primer pairs were designed for sixty loci. Among these, 27 displayed polymorphism in a testing population of 16 P. abies individuals sampled across Austria and in an additional screening population of 96 P. abies individuals from two geographically distinct Austrian populations. Allele numbers per locus ranged from two to 17 with observed heterozygosity ranging from 0.075 to 0.99.ConclusionsWe have characterized variable EST SSR markers for Norway spruce detected in expressed genes. Due to their moderate to high degree of variability in the two tested screening populations, these newly developed SSR markers are well suited for the analysis of stress related functional variation present in Norway spruce populations.
Plant chitinases (EC 3.2.1.14) are considered as typical defense components under various environmental stresses, including heavy metals. In addition, some of them play crucial role in normal plant growth and development. In this work the profile and activities of these enzymes were analyzed to study the variability of defense within soybean plants. For this, two cultivars with contrasting tolerance to metals were exposed to ecologically relevant doses of arsenic and cadmium. Enzyme profiles revealed a spatial distribution of chitinase activities throughout the individual plants, tending to decrease upwards to the top of the plants. Under metal stress, there was a single responsive isoform detected in roots that behaved opposingly in the studied soybean cultivars. In contrast, several isoforms were activated in aboveground tissue, predominantly in mature (older) leaves. Of these, two were identified (21 and 42 kDa) as more specifically involved in defense against metal stress in soybean. The 21 kDa isoform was concluded as possibly contributing to metal tolerance and deserves further investigations at molecular level. Nevertheless, no sound interaction was detected between leaf developmental stage and responsiveness to metals for either of the chitinase isoforms. Further studying the distribution of induced defense within plants is important in understanding the defense strategy of plants against environmental cues including metals.
Plants have a potential for the uptake and accumulation of essential and non-essential trace elements. The ability to take up and tolerate metals varies between and within species as well as between metals. For most metals, the mechanisms involved in plant tolerance, uptake and accumulation are still not fully known and it is not known to what extent the plant response is metal-specific rather than a general stress response. In the present study, the growth response of soybean to Cd, As, Al and NaCl was compared and contrasted to simple sequence repeat (SSR) marker analysis results for Cda1, a dominant gene located in a major quantitative trait locus that regulates Cd accumulation in soybean, to evaluate the hypothesis that general effect patterns are induced by the individual metals. Principal component analysis revealed that the root growth response was most diverse for Al exposure and decreased in the order of Al > As > Cd > NaCl. NaCl did not exert a differentiating effect, indicating response mechanisms similar, at least partially, to metal exposure. The applied stressors yielded a distinguishable pattern of root responses, indicating the potential of such screens to identify agents acting similarly or differently. The SSR marker analysis also facilitated characterization of the Cd accumulation potential of the 22 soybean cultivars studied, and thereby identification of cultivars with potential health risk under cultivation in Cd-contaminated soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.