Memory is created by several interlinked processes in the brain, some of which require long-term gene regulation. Epigenetic mechanisms are likely candidates for regulating memory-related genes. Among these, DNA methylation is known to be a long lasting genomic mark and may be involved in the establishment of long-term memory. Here we demonstrate that DNA methyltransferases, which induce and maintain DNA methylation, are involved in a particular aspect of associative long-term memory formation in honeybees, but are not required for short-term memory formation. While long-term memory strength itself was not affected by blocking DNA methyltransferases, odor specificity of the memory (memory discriminatory power) was. Conversely, perceptual discriminatory power was normal. These results suggest that different genetic pathways are involved in mediating the strength and discriminatory power of associative odor memories and provide, to our knowledge, the first indication that DNA methyltransferases are involved in stimulus-specific associative long-term memory formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.