Hybrid lead halide perovskites typically form polycrystalline films that have multiple grain sizes and surface defects. A key engineering challenge toward commercialization is therefore the production of homogeneous, defect‐free large‐area devices achieving high efficiency. New market opportunities may arise from vacuum‐deposited perovskites if detailed understanding and control of crystal formation are available. Of the many factors that make reproducibility of device performance difficult, two variables are identified that have not yet been considered in detail: deposition speed and underlayer material selection. Herein, it is demonstrated that small changes in the perovskite growth rate (0.18–0.72 Å·s−1) substantially affect the preferred crystal orientation. Further, varying underlayer interfaces greatly influence the composition of the final perovskite and thus its energetic profile. The research aids control in fine‐tuning the perovskite film at the nanometer scale, which enables the reproducible fabrication of vertically aligned and micrometer‐sized grain features, highly demanded for in high‐quality semiconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.