Defense against natural enemies constitutes an important driver of herbivore host range evolution in the wild. Populations of the Baltimore checkerspot butterfly, Euphydryas phaeton (Nymphalidae), have recently incorporated an exotic plant, Plantago lanceolata (Plantaginaceae), into their dietary range. To understand the tritrophic consequences of utilizing this exotic host plant, we examined immune performance, chemical defense, and interactions with a natural entomopathogen (Junonia coenia densovirus, Parvoviridae) across wild populations of this specialist herbivore. We measured three immune parameters, sequestration of defensive iridoid glycosides (IGs), and viral infection load in field‐collected caterpillars using either P. lanceolata or a native plant, Chelone glabra (Plantaginaceae). We found that larvae using the exotic plant exhibited reduced immunocompetence, compositional differences in IG sequestration, and higher in situ viral burdens compared to those using the native plant. On both host plants, high IG sequestration was associated with reduced hemocyte concentration in the larval hemolymph, providing the first evidence of incompatibility between sequestered chemical defenses and the immune response (i.e., the “vulnerable host” hypothesis) from a field‐based study. However, despite this negative relationship between IG sequestration and cellular immunity, caterpillars with greater sequestration harbored lower viral loads. While survival of virus‐infected individuals decreased with increasing viral burden, it ultimately did not differ between the exotic and native plants. These results provide evidence that: (1) phytochemical sequestration may contribute to defense against pathogens even when immunity is compromised and (2) herbivore persistence on exotic plant species may be facilitated by sequestration and its role in defense against natural enemies.
Incorporation of exotic plants into the diets of native herbivores is a common phenomenon, influencing interactions with natural enemies and providing insight into the tritrophic costs and benefits of dietary expansion. We evaluated how use of an exotic plant, Plantago lanceolata, impacted immune performance, development and susceptibility to pathogen infection in the neotropical herbivore Anartia jatrophae (Lepidoptera: Nymphalidae). Caterpillars were reared on P. lanceolata or a native plant, Bacopa monnieri, and experimentally infected with a pathogenic virus, Junonia coenia densovirus. We found that virus-challenged herbivores exhibited higher survival rates and lower viral burdens when reared on P. lanceolata compared to B. monnieri, though immune performance and development time were largely similar on the two plants. These findings reveal that use of an exotic plant can impact the vulnerability of a native herbivore to pathogen infection, suggesting diet-mediated protection against disease as a potential mechanism facilitating the incorporation of novel resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.