Using x-ray photoemission electron microscopy and the magneto-optical Kerr effect, we have demonstrated a perpendicular magnetic anisotropy that could be due to exchange coupling between the ferromagnetic and antiferromagnetic layers. The results of magnetic imaging and hysteresis loops show that the magnetization of Fe and permalloy (Py) films orients from the in-plane to perpendicular direction, as an Mn underlayer is above a threshold value that depends on the Fe or Py layer thickness. Their thickness-dependent behaviors can be quantitatively described by a phenomenological model that takes into account the finite-size effect of the antiferromagnet on exchange coupling. The anisotropy energy extracted from the model and the thermal stability of perpendicular magnetization enhanced with the increase of the Mn underlayer further demonstrate the exchange coupling nature.
We report an experimental investigation of the magnetoelastic effects of ultrathin antiferromagnets, performed by comparing the characteristic behavior of the induced spin-reorientation transition (SRT) of Co films in two types of epitaxially grown bilayers: face-centered-cubic (fcc)-like Mn/Co (fcc-Mn: a = 3.75Å, c = 3.76Å) and face-centered-tetragonal (fct)-Mn (a = 3.61Å, c = 3.78Å). Magnetic hysteresis loops and magnetic domain images indicate that both fcc-Mn and fct-Mn films can produce a 110 to 100 SRT in adjacent Co films when the thickness of the Mn layer is greater than a temperature-dependent critical value. Detailed analysis of the critical thickness of Mn films and the evolution of the Co domain structure upon SRT indicate that the fct-Mn film had a higher antiferromagnetic ordering temperature and stronger lateral Mn-Mn exchange coupling compared with the fcc-Mn film. The enhanced long-range antiferromagnetic ordering emerging concurrently with the in-plane lattice variation of the fcc-like Mn film in Mn/Co bilayers clearly showed the magnetoelastic effect of ultrathin antiferromagnets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.