Phosphorylated derivatives of phosphatidylinositol (PtdIns) regulate many intracellular events, including vesicular trafficking and actin remodeling, by recruiting proteins to their sites of function. PtdIns(4,5)-bisphosphate [PI(4,5)P 2 ] and related phosphoinositides are mainly synthesized by type I PtdIns-4-phosphate 5-kinases (PIP5Ks). We found that PIP5K induces endosomal tubules in COS-7 cells. ADP-ribosylation factor (ARF) 6 has been shown to act upstream of PIP5K and regulate endocytic transport and tubulation. ARF GAP with coiled-coil, ankyrin repeat, and pleckstrin homology domains 1 (ACAP1) has guanosine triphosphataseactivating protein (GAP) activity for ARF6. While there were few tubules induced by the expression of ACAP1 alone, numerous endosomal tubules were induced by coexpression of PIP5K and ACAP1. ACAP1 has a pleckstrin homology (PH) domain known to bind phosphoinositide and a Bin/amphiphysin/Rvs (BAR) domain that has been reported to detect membrane curvature. Truncated and point mutations in the ACAP1 BAR and PH domains revealed that both BAR and PH domains are required for tubulation. These results suggest that two ARF6 downstream molecules, PIP5K and ACAP1, function together in endosomal tubulation and that phosphoinositide levels may regulate endosomal dynamics. Membrane dynamics are important for a variety of cell functions including membrane trafficking and cell motility and require certain changes in the membrane curvature. The shape of the membrane is regulated by both the membrane composition and the interaction with cytosolic proteins (e.g. coat proteins) (1). Enzymatic modification of membrane lipids has been suggested to affect membrane deformation (2) and the functions of motor proteins (3,4). Phosphoinositides are synthesized by families of phosphatidylinositol (PtdIns) kinases in the cytoplasmic leaflet of membranes and recruit effector proteins to particular membrane regions. For example, PtdIns(4,5)-bisphosphate (PIP 2 ) has been shown to activate neural WiskottAldrich syndrome protein (N-WASP) and then N-WASP in turn activates an actin-nucleating factor, Arp2/3 complex, to induce actin polymerization (5). Consistent with this model, PtdIns-4-phosphate 5-kinases (PIP5K), a PIP 2 synthesizing enzyme, induces actin polymerization (6,7). Therefore, the dynamics of the distribution of phosphoinositides are evidently of great interest.Coat proteins are also important regulators of membrane dynamics. PIP 2 is known to be crucial in the recruitment of coat proteins. Accordingly, PIP5K has been shown to be involved in many membrane trafficking events such as endocytosis (8). The ADP-ribosylation factor (ARF) family of small guanosine triphosphatases (GTPases) is also required in the recruitment of coat proteins from the cytosol to target membranes by cycling between its inactive and active forms. The ARF GTPase cycle has two sets of regulators. The exchange of GDP for GTP is catalyzed by guanine nucleotide exchange factors (GEFs). The hydrolysis of GTP to GDP is catalyzed by GTPase-a...
Cell to cell contact in epithelial cells is crucial for tissue integrity and is maintained by junctional complexes, such as the adherens junction (AJ). Actin polymerization has been shown to be important for AJ formation; however, the molecular mechanisms have yet to be clarified. It has been shown that increased phosphatidylinositol-4,5-bisphosphate (PIP2) induces actin polymerization. It is thus of interest to know more about the production of PIP2 during cell-cell adhesion formation in epithelial cells. The distribution of phosphatidylinositol-4-phosphate 5-kinase gamma635 (PIP5Kgamma635), an isoform of the PIP2 synthesizing enzymes, was examined in epithelial cell line A431. It was found that, in non-contact cells, PIP5Kgamma635 was not concentrated at the plasma membrane. However, in cells that were in contact, PIP5Kgamma635 localized to the intercellular contact sites and colocalized with E-cadherin and beta-catenin, two components of AJ, and with polymerized actin, but did not colocalize with focal adhesion, integrin-mediated cell-substratum complex. Decreasing calcium ion concentration induced both disruption of intercellular adhesion and the dissociation of both PIP5Kgamma635 and actin from the contact site. These results suggest that PIP5K has an important role in actin polymerization in epithelial cell-cell adhesion.
Tight junctions (TJs) are cellular junctions within the mammalian epithelial cell sheet that function as a physical barrier to molecular transport within the intercellular space. Dysregulation of TJs leads to various diseases. Tricellular TJs (tTJs), specialized structural variants of TJs, are formed by multiple transmembrane proteins (e.g., lipolysis-stimulated lipoprotein receptor [LSR] and tricellulin) within tricellular contacts in the mammalian epithelial cell sheet. However, the mechanism for recruiting LSR and tricellulin to tTJs is largely unknown. Previous studies have identified that tyrphostin 9, the dual inhibitor of Pyk2 (a nonreceptor tyrosine kinase) and receptor tyrosine kinase platelet-derived growth factor receptor (PDGFR), suppresses LSR and tricellulin recruitment to tTJs in EpH4 (a mouse mammary epithelial cell line) cells. In this study, we investigated the effect of Pyk2 inhibition on LSR and tricellulin localization to tTJs. Pyk2 inactivation by its specific inhibitor or repression by RNAi inhibited the localization of LSR and downstream tricellulin to tTJs without changing their expression level in EpH4 cells. Pyk2-dependent changes in subcellular LSR and tricellulin localization were independent of c-Jun N-terminal kinase (JNK) activation and expression. Additionally, Pyk2-dependent LSR phosphorylation at Tyr-237 was required for LSR and tricellulin localization to tTJs and decreased epithelial barrier function. Our findings indicated a novel mechanism by which Pyk2 regulates tTJ assembly and epithelial barrier function in the mammalian epithelial cell sheet.
Cyanobacteriochromes (CBCRs), which are known as linear tetrapyrrole-binding photoreceptors, to date can only be detected from cyanobacteria. They can perceive light only in a small unit, which is categorized into various lineages in correlation with their spectral and structural characteristics. Recently, we have succeeded in identifying specific molecules, which can incorporate mammalian intrinsic biliverdin (BV), from the expanded red/green (XRG) CBCR lineage and in converting BV-rejective molecules into BV-acceptable ones with the elucidation of the structural basis. Among the BV-acceptable molecules, AM1_1870g3_BV4 shows a spectral red-shift in comparison with other molecules, while NpF2164g5_BV4 does not show photoconversion but stably shows a near-infrared (NIR) fluorescence. In this study, we found that AM1_1870g3_BV4 had a specific Tyr residue near the d-ring of the chromophore, while others had a highly conserved Leu residue. The replacement of this Tyr residue with Leu in AM1_1870g3_BV4 resulted in a blue-shift of absorption peak. In contrast, reverse replacement in NpF2164g5_BV4 resulted in a red-shift of absorption and fluorescence peaks, which applies to fluorescence bio-imaging in mammalian cells. Notably, the same Tyr/Leu-dependent color-tuning is also observed for the CBCRs belonging to the other lineage, which indicates common molecular mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.