Model compression through quantization is commonly applied to convolutional neural networks (CNNs) deployed on compute and memory-constrained embedded platforms. Different layers of the CNN can have varying degrees of numerical precision for both weights and activations, resulting in a large search space. Together with the hardware (HW) design space, the challenge of finding the globally optimal HW-CNN combination for a given application becomes daunting. To this end, we propose HW-FlowQ, a systematic approach that enables the co-design of the target hardware platform and the compressed CNN model through quantization. The search space is viewed at three levels of abstraction, allowing for an iterative approach for narrowing down the solution space before reaching a high-fidelity CNN hardware modeling tool, capable of capturing the effects of mixed-precision quantization strategies on different hardware architectures (processing unit counts, memory levels, cost models, dataflows) and two types of computation engines (bit-parallel vectorized, bit-serial). To combine both worlds, a multi-objective non-dominated sorting genetic algorithm (NSGA-II) is leveraged to establish a Pareto-optimal set of quantization strategies for the target HW-metrics at each abstraction level. HW-FlowQ detects optima in a discrete search space and maximizes the task-related accuracy of the underlying CNN while minimizing hardware-related costs. The Pareto-front approach keeps the design space open to a range of non-dominated solutions before refining the design to a more detailed level of abstraction. With equivalent prediction accuracy, we improve the energy and latency by 20% and 45% respectively for ResNet56 compared to existing mixed-precision search methods.
Face masks have long been used in many areas of everyday life to protect against the inhalation of hazardous fumes and particles. They also offer an effective solution in healthcare for bi-directional protection against air-borne diseases. Wearing and positioning the mask correctly is essential for its function. Convolutional neural networks (CNNs) offer an excellent solution for face recognition and classification of correct mask wearing and positioning. In the context of the ongoing COVID-19 pandemic, such algorithms can be used at entrances to corporate buildings, airports, shopping areas, and other indoor locations, to mitigate the spread of the virus. These application scenarios impose major challenges to the underlying compute platform. The inference hardware must be cheap, small and energy efficient, while providing sufficient memory and compute power to execute accurate CNNs at a reasonably low latency. To maintain data privacy of the public, all processing must remain on the edge-device, without any communication with cloud servers. To address these challenges, we present BinaryCoP, a low-power binary neural network classifier for correct facial-mask wear and positioning. The classification task is implemented on an embedded FPGA accelerator, performing high-throughput binary operations. Classification can take place at up to ∼6400 framesper-second, easily enabling multi-camera, speed-gate settings or statistics collection in crowd settings. When deployed on a single entrance or gate, the idle power consumption is reduced to 1.6W, improving the battery-life of the device. We achieve an accuracy of up to 98% for four wearing positions of the MaskedFace-Net dataset. To maintain equivalent classification accuracy for all face structures, skin-tones, hair types, and mask types, the algorithms are tested for their ability to generalize the relevant features over all subjects using the Grad-CAM approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.