Cocrystals, a long known but understudied class of crystalline solids, have attracted interest from crystal engineers and pharmaceutical scientists in the past decade and are now an integral part of the preformulation stage of drug development. This is largely because cocrystals that contain a drug molecule, pharmaceutical cocrystals, can modify physicochemical properties without the need for covalent modification of the drug molecule. This review presents a brief history of cocrystals before addressing recent advances in design, discovery and development of pharmaceutical cocrystals that have occurred since an earlier review published in 2004. We address four aspects of cocrystals: nomenclature; design using hydrogen-bonded supramolecular synthons; methods of discovery and synthesis; development of pharmaceutical cocrystals as drug products. Cocrystals can be classified into molecular cocrystals (MCCs) that contain only neutral components (coformers) and ionic cocrystals (ICCs), which are comprised of at least one ionic coformer that is a salt. That cocrystals, especially ICCs, offer much greater diversity in terms of composition and properties than single component crystal forms and are amenable to design makes them of continuing interest. Seven recent case studies that illustrate how pharmaceutical cocrystals can improve physicochemical properties and clinical performance of drug substances, including a recently approved drug product based upon an ICC, are presented.
Current United States Food and Drug Administration (FDA)-approved lithium salts are plagued with a narrow therapeutic window. Recent attempts to find alternative drugs have identified new chemical entities, but lithium’s polypharmacological mechanisms for treating neuropsychiatric disorders are highly debated and are not yet matched. Thus, re-engineering current lithium solid forms in order to optimize performance represents a low cost and low risk approach to the desired therapeutic outcome. In this contribution, we employed a crystal engineering strategy to synthesize the first ionic cocrystals (ICCs) of lithium salts with organic anions. We are unaware of any previous studies that have assessed the biological efficacy of any ICCs, and encouragingly we found that the new speciation did not negatively affect established bioactivities of lithium. We also observed that lithium ICCs exhibit modulated pharmacokinetics compared to lithium carbonate. Indeed, the studies detailed herein represent an important advancement in a crystal engineering approach to a new generation of lithium therapeutics.
Caffeine-oxalic acid cocrystal, widely reported to be stable under high humidity, dissociated in the presence of numerous pharmaceutical excipients. In cocrystal-excipient binary systems, the water mediated dissociation reaction occurred under pharmaceutically relevant storage conditions. Powder X-ray diffractometry was used to identify the dissociated products obtained as a consequence of coformer-excipient interaction. The proposed cocrystal dissociation mechanism involved water sorption, dissolution of cocrystal and excipient in the sorbed water, proton transfer from oxalic acid to the excipient, and formation of metal salts and caffeine hydrate. In compressed tablets with magnesium stearate, the cocrystal dissociation was readily discerned from the appearance of peaks attributable to caffeine hydrate and stearic acid. Neutral excipients provide an avenue to circumvent the risk of water mediated cocrystal dissociation.
Current lithium drugs are plagued with a narrow therapeutic window and tend to be hygroscopic. However, they remain the gold standard for treating manic episodes in bipolar disorder. In this contribution, we report a crystal engineering study aimed at the preparation and characterization of ionic cocrystals (ICCs) of lithium chloride (LIC) and lithium bromide (LIB) with glucose (GLU). The structure of LIBGLU was studied by single crystal X-ray diffraction and found to be isostructural with related sodium chloride-glucose ICCs. The physical stability of LICGLU was compared to LIC at 50% RH and 25°C and through dynamic vapor sorption analysis. The blood and brain pharmacokinetics of LICGLU was compared to LIC in rat models and revealed little change in performance. This study reveals that ICCs can modestly improve solid form stability of lithium salts without impacting in vivo performance, a step towards enabling development of the next generation of lithium therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.