The evolution of crystal engineering into a form of supramolecular synthesis is discussed in the context of problems and opportunities in the pharmaceutical industry. Specifically, it has become clear that a wide array of multiple component pharmaceutical phases, so called pharmaceutical co-crystals, can be rationally designed using crystal engineering, and the strategy affords new intellectual property and enhanced properties for pharmaceutical substances.
Cocrystals, a long known but understudied class of crystalline solids, have attracted interest from crystal engineers and pharmaceutical scientists in the past decade and are now an integral part of the preformulation stage of drug development. This is largely because cocrystals that contain a drug molecule, pharmaceutical cocrystals, can modify physicochemical properties without the need for covalent modification of the drug molecule. This review presents a brief history of cocrystals before addressing recent advances in design, discovery and development of pharmaceutical cocrystals that have occurred since an earlier review published in 2004. We address four aspects of cocrystals: nomenclature; design using hydrogen-bonded supramolecular synthons; methods of discovery and synthesis; development of pharmaceutical cocrystals as drug products. Cocrystals can be classified into molecular cocrystals (MCCs) that contain only neutral components (coformers) and ionic cocrystals (ICCs), which are comprised of at least one ionic coformer that is a salt. That cocrystals, especially ICCs, offer much greater diversity in terms of composition and properties than single component crystal forms and are amenable to design makes them of continuing interest. Seven recent case studies that illustrate how pharmaceutical cocrystals can improve physicochemical properties and clinical performance of drug substances, including a recently approved drug product based upon an ICC, are presented.
The success of mRNA-based therapies depends on the availability of a safe and efficient delivery vehicle. Lipid nanoparticles have been identified as a viable option. However, there are concerns whether an acceptable tolerability profile for chronic dosing can be achieved. The efficiency and tolerability of lipid nanoparticles has been attributed to the amino lipid. Therefore, we developed a new series of amino lipids that address this concern. Clear structure-activity relationships were developed that resulted in a new amino lipid that affords efficient mRNA delivery in rodent and primate models with optimal pharmacokinetics. A 1-month toxicology evaluation in rat and non-human primate demonstrated no adverse events with the new lipid nanoparticle system. Mechanistic studies demonstrate that the improved efficiency can be attributed to increased endosomal escape. This effort has resulted in the first example of the ability to safely repeat dose mRNA-containing lipid nanoparticles in non-human primate at therapeutically relevant levels.
Cocrystals of the poorly soluble antifungal drug cis-itraconazole (1) with 1,4-dicarboxylic acids have been prepared. The crystal structure of the succinic acid cocrystal with 1 was determined to be a trimer by single-crystal X-ray. The trimer is comprised of two molecules of 1 oriented in antiparallel fashion to form a pocket with a triazole at either end. The extended succinic acid molecule fills the pocket, bridging the triazole groups through hydrogen-bonding interactions rather than interacting with the more basic piperazine nitrogens. The solubility and dissolution rate of some of the cocrystals are approximately the same as those of the amorphous drug in the commercial formulation and are much higher than those for the crystalline free base. The results suggest that cocrystals of drug molecules have the possibility of achieving the higher oral bioavailability common for amorphous forms of water-insoluble drugs while maintaining the long-term chemical and physical stability that crystal forms provide.
mRNA vaccines have the potential to tackle many unmet medical needs that are unable to be addressed with conventional vaccine technologies. A potent and well-tolerated delivery technology is integral to fully realizing the potential of mRNA vaccines. Pre-clinical and clinical studies have demonstrated that mRNA delivered intramuscularly (IM) with first-generation lipid nanoparticles (LNPs) generates robust immune responses. Despite progress made over the past several years, there remains significant opportunity for improvement, as the most advanced LNPs were designed for intravenous (IV) delivery of siRNA to the liver. Here, we screened a panel of proprietary biodegradable ionizable lipids for both expression and immunogenicity in a rodent model when administered IM. A subset of compounds was selected and further evaluated for tolerability, immunogenicity, and expression in rodents and non-human primates (NHPs). A lead formulation was identified that yielded a robust immune response with improved tolerability. More importantly for vaccines, increased innate immune stimulation driven by LNPs does not equate to increased immunogenicity, illustrating that mRNA vaccine tolerability can be improved without affecting potency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.