Recent surge in the development of superhydrophobic/superoleophobic surfaces has been motivated by surfaces like fish scales that have hierarchical structures, which are believed to promote water or oil repellency. In this work, we show that the under-water oil repellency of fish scales is entirely due to the mucus layer formation as part of its defense mechanism, which produces unprecedented contact angle close to 180°. We have identified the distinct chemical signatures that are responsible for such large contact angle, thereby making fish scale behave highly superoleophobic inside the water medium. In absence of the mucus layer, it is found that the contact angle decreases quite dramatically to around 150°, making it less oleophobic, the degree of such oleophobicity can then be contributed to its inherent hierarchical structures. Hence, through this systematic study, for the first time we have conclusively shown the role of the fish's mucus layer to generate superoleophobicity and negate the common notion that hierarchical structure is the only reason for such intrinsic behavior of the fish scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.