This paper presents a novel passive three-output differential with three degrees of freedom (3DOF), that translates motion and torque from a single input to three outputs. The proposed Three-Output Open Differential is designed such that its functioning is analogous to the functioning of a traditional two-output open differential. That is, the differential translates equal motion and torque to all its three outputs when the outputs are unconstrained or are subjected to equivalent load conditions. The introduced design is the first differential with three outputs to realise this outcome. The differential action between the three outputs is realised passively by a symmetric arrangement of three two-output open differentials and three two-input open differentials. The resulting differential mechanism achieves the novel result of equivalent input to output angular velocity and torque relations for all its three outputs. Furthermore, Three-Output Open Differential achieves the novel result for differentials with more than two outputs where each of its outputs shares equivalent angular velocity and torque relations with all the other outputs. The kinematics and dynamics of the Three-Output Open Differential are derived using the bond graph method. In addition, the merits of the differential mechanism along with its current and potential applications are presented.
Variable stiffness actuators (VSA) are finding wide applications in robotics to enhance safety during interactions with stiff environments. Researchers have proposed various design architectures like antagonistic actuation, which requires both the motors to be powered simultaneously for varying the stiffness or equilibrium position. In this paper, the design of a novel joint module, named as variable stiffness joint module (VSJM), is proposed, which consists of a lead-screw arrangement for varying the stiffness range and a cam based mechanism to change the stiffness within the set range quickly. The cam profile has been synthesized to maximize the stiffness variation as well as to maintain the cam and cam follower in static equilibrium when the output link is in the equilibrium position. This was achieved by properly positioning and orienting the friction cones at the contact points. By mechanically compensating the moment due to unbalanced forces at the contact points, the continuous usage of stiffness motor has been eliminated, leading to reduced power consumption. Details of the proposed mechanism are presented along with the mathematical model for cam profile synthesis and static analysis. A simplified prototype of the proposed design has been fabricated to perform the experiments. A hammering-a-nail experiment has been conducted to show the capability of the mechanism, and the results are presented.
This paper presents the design, analysis, and testing of a novel multimodal grasper having the capabilities of shape conformation, within-hand manipulation, and a built-in compact mechanism to vary the forces at the contact surface. The proposed grasper has two important qualities: versatility and less complexity. The former refers to the ability to grasp a range of objects having different geometrical shape, size, and payload and perform in-hand manipulations such as rolling and sliding, and the latter refers to the uncomplicated design, and ease of planning and control strategies. Increasing the number of functions performed by the grasper to adapt to a variety of tasks in structured and unstructured environments without increasing the mechanical complexity is the main interest of this research. The proposed grasper consists of two hybrid jaws having a rigid inner structure encompassed by a flexible, active gripping surface. The flexibility of the active surface has been exploited to achieve shape conformation, and the same has been utilized with a compact mechanism, introduced in the jaws, to vary the contact forces while grasping and manipulating an object. Simple and scalable structure, compactness, low cost, and simple control scheme are the main features of the proposed design. Detailed kinematic and static analysis are presented to show the capability of the grasper to adjust and estimate the contact forces without using a force sensor. Experiments are conducted on the fabricated prototype to validate the different modes of operation and to evaluate the advantages of the proposed concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.