denotes equal contribution Fig. 1. An illustration of the proposed method. The first two rows show objects tracks in frames t and t + 1. The bottom row depicts how 3D position and orientation information is propagated from frame t to frame t + 1. This information is used to specify search areas for each object in the subsequent frame, and this greatly reduces the number of pairwise costs that are to be computed.Abstract-This paper introduces geometry and novel object shape and pose costs for multi-object tracking in road scenes. Using images from a monocular camera alone, we devise pairwise costs for object tracks, based on several 3D cues such as object pose, shape, and motion. The proposed costs are agnostic to the data association method and can be incorporated into any optimization framework to output the pairwise data associations. These costs are easy to implement, can be computed in real-time, and complement each other to account for possible errors in a tracking-by-detection framework. We perform an extensive analysis of the designed costs and empirically demonstrate consistent improvement over the state-of-the-art under varying conditions that employ a range of object detectors, exhibit a variety in camera and object motions, and, more importantly, are not reliant on the choice of the association framework. We also show that, by using the simplest of associations frameworks (two-frame Hungarian assignment), we surpass the state-of-the-art in multi-object-tracking on road scenes. More qualitative and quantitative results can be found at https://junaidcs032.github.io/Geometry_ ObjectShape_MOT/. Code and data to reproduce our experiments and results are now available at https://github. com/JunaidCS032/MOTBeyondPixels.
We present an approach for reconstructing vehicles from a single (RGB) image, in the context of autonomous driving. Though the problem appears to be ill-posed, we demonstrate that prior knowledge about how 3D shapes of vehicles project to an image can be used to reason about the reverse process, i.e., how shapes (back-)project from 2D to 3D. We encode this knowledge in shape priors, which are learnt over a small keypoint-annotated dataset. We then formulate a shapeaware adjustment problem that uses the learnt shape priors to recover the 3D pose and shape of a query object from an image. For shape representation and inference, we leverage recent successes of Convolutional Neural Networks (CNNs) for the task of object and keypoint localization, and train a novel cascaded fully-convolutional architecture to localize vehicle keypoints in images. The shape-aware adjustment then robustly recovers shape (3D locations of the detected keypoints) while simultaneously filling in occluded keypoints. To tackle estimation errors incurred due to erroneously detected keypoints, we use an Iteratively Re-weighted Least Squares (IRLS) scheme for robust optimization, and as a by-product characterize noise models for each predicted keypoint. We evaluate our approach on autonomous driving benchmarks, and present superior results to existing monocular, as well as stereo approaches.
Abstract-Present image based visual servoing approaches rely on extracting hand crafted visual features from an image. Choosing the right set of features is important as it directly affects the performance of any approach. Motivated by recent breakthroughs in performance of data driven methods on recognition and localization tasks, we aim to learn visual feature representations suitable for servoing tasks in unstructured and unknown environments. In this paper, we present an end-to-end learning based approach for visual servoing in diverse scenes where the knowledge of camera parameters and scene geometry is not available a priori. This is achieved by training a convolutional neural network over color images with synchronised camera poses. Through experiments performed in simulation and on a quadrotor, we demonstrate the efficacy and robustness of our approach for a wide range of camera poses in both indoor as well as outdoor environments.
Fig. 1: CalibNet estimates the extrinsic calibration parameters between a 3D LiDAR and a 2D camera. It takes as input an RGB image (a) from a calibrated camera, a raw LiDAR point cloud (b), and outputs a 6-DoF rigid-body transformation T that best aligns the two inputs. (c) shows the colorized point cloud output for a mis-calibrated setup, and (d) shows the output after calibration using our network. As shown, using the mis-calibrated point cloud to recover a colorized 3D map of the world results in an incoherent reconstruction. Notice how the 3D structures highlighted in (c) using red rectangles fail to project to their 2D counterparts. However, using the extrinsic calibration parameters predicted by CalibNet produces more consistent and accurate reconstructions (d), even for large initial mis-calibrations.Abstract-3D LiDARs and 2D cameras are increasingly being used alongside each other in sensor rigs for perception tasks. Before these sensors can be used to gather meaningful data, however, their extrinsics (and intrinsics) need to be accurately calibrated, as the performance of the sensor rig is extremely sensitive to these calibration parameters. A vast majority of existing calibration techniques require significant amounts of data and/or calibration targets and human effort, severely impacting their applicability in large-scale production systems. We address this gap with CalibNet: a geometrically supervised deep network capable of automatically estimating the 6-DoF rigid body transformation between a 3D LiDAR and a 2D camera in real-time. CalibNet alleviates the need for calibration targets, thereby resulting in significant savings in calibration efforts. During training, the network only takes as input a LiDAR point cloud, the corresponding monocular image, and the camera calibration matrix K. At train time, we do not impose direct supervision (i.e., we do not directly regress to the calibration parameters, for example). Instead, we train the network to predict calibration parameters that maximize the geometric and photometric consistency of the input images and point clouds. CalibNet learns to iteratively solve the underlying geometric problem and accurately predicts extrinsic calibration parameters for a wide range of mis-calibrations, without requiring retraining or domain adaptation. The project page is hosted at https://epiception.github.io/CalibNet
This paper presents a realtime, incremental multibody visual SLAM system that allows choosing between full 3D reconstruction or simply tracking of the moving objects. Motion reconstruction of dynamic points or objects from a monocular camera is considered very hard due to well known problems of observability. We attempt to solve the problem with a Bearing only Tracking (BOT) and by integrating multiple cues to avoid observability issues. The BOT is accomplished through a particle filter, and by integrating multiple cues from the reconstruction pipeline. With the help of these cues, many real world scenarios which are considered unobservable with a monocular camera is solved to reasonable accuracy. This enables building of a unified dynamic 3D map of scenes involving multiple moving objects. Tracking and reconstruction is preceded by motion segmentation and detection which makes use of efficient geometric constraints to avoid difficult degenerate motions, where objects move in the epipolar plane. Results reported on multiple challenging real world image sequences verify the efficacy of the proposed framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.