denotes equal contribution Fig. 1. An illustration of the proposed method. The first two rows show objects tracks in frames t and t + 1. The bottom row depicts how 3D position and orientation information is propagated from frame t to frame t + 1. This information is used to specify search areas for each object in the subsequent frame, and this greatly reduces the number of pairwise costs that are to be computed.Abstract-This paper introduces geometry and novel object shape and pose costs for multi-object tracking in road scenes. Using images from a monocular camera alone, we devise pairwise costs for object tracks, based on several 3D cues such as object pose, shape, and motion. The proposed costs are agnostic to the data association method and can be incorporated into any optimization framework to output the pairwise data associations. These costs are easy to implement, can be computed in real-time, and complement each other to account for possible errors in a tracking-by-detection framework. We perform an extensive analysis of the designed costs and empirically demonstrate consistent improvement over the state-of-the-art under varying conditions that employ a range of object detectors, exhibit a variety in camera and object motions, and, more importantly, are not reliant on the choice of the association framework. We also show that, by using the simplest of associations frameworks (two-frame Hungarian assignment), we surpass the state-of-the-art in multi-object-tracking on road scenes. More qualitative and quantitative results can be found at https://junaidcs032.github.io/Geometry_ ObjectShape_MOT/. Code and data to reproduce our experiments and results are now available at https://github. com/JunaidCS032/MOTBeyondPixels.
Sensor network applications are generally characterized by long idle durations and intermittent communication patterns. The traffic loads are typically so low that overall idle duration energy consumption dominates. Low duty cycle MAC protocols are used in order to reduce the energy consumption in idle periods. However, lowering the duty cycle value in favour of energy consumption results in increased latency, which makes this approach undesirable for many practical applications.In this paper, we propose Radio Triggered Wake-up with Addressing Capabilities (RTWAC) that allows suppressing the idle duration current consumption. Our solution consists of an external low-cost hardware wake-up circuit attached to the microcontroller of a sensor node. In order to communicate with a sensor node, a special kind of out-of-band modulated wake-up signal is transmitted. The modulated signal contains data that enables one to distinguish between differently addressed nodes in order to avoid undesired node wake-ups. Furthermore, we advocate the idea of combining RTWAC to a MAC protocol running on the normal sensor node radio in order to simultaneously achieve low energy consumption and low latency for reliable data communication. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.