Folic acid is B-9 vitamin. Folic acid is prescribed commonly for pregnant women to prevent neural tube defects in the fetus, patients under chemotherapy, pernicious anemia and to reduce the risk of stroke and cardiovascular disease. Acute or chronic ingestion of a large dose of folic acid generally manifests as neurological complications, which are reversible. In this present case, a 23-year-old pregnant woman committed suicide by consuming folic acid tablets and succumbed to death within 36 h. Postmortem toxicological analysis detected folic acid in viscera. Death following acute consumption of folic acid is rare and has been not reported in the literature, to the best of our knowledge.
Recent trends are shifting to the use of composite materials and their demands for making alternate materials to metals due to weight ratio, while the synthetic fiber composite also creates environmental hazards. To overcome these issues, composite materials with natural fiber reinforcement are being developed. The current work is concerned with the fabrication of composite laminates using the traditional hand layup method, with 40% reinforcement of basalt fiber mat and sawdust filler and 60% epoxy, with quantifying the thermal effects of composite laminates varying with four different weight fractions of basalt fiber and sawdust filler materials. The results revealed that maximum thermal conductance, heat deflection temperature, and coefficient of linear thermal expansion values are 0.254 W/mK, 95°C, and 2.9 × 10−5/°C, respectively, which increases sawdust filler loading resist the thermal effect compared to basalt fiber loading of hybrid composite.
The present work was done to optimize the process parameters of the oil extraction from the algae species spirogyra by using n-hexane as the solvent using the Soxhlet apparatus. The response surface methodology (RSM) and artificial neural network (ANN) were employed to optimize the particle size of the algae powder, dryness level of the algae powder, solid to solvent ratio, reaction time, and extraction temperature of the oil extraction process. Also, the physiochemical properties of the extracted oil were investigated. The comparative evaluation was done between the RSM and ANN models to select the more precise and accurate model. The coefficient of determination,
R
2
of 98.92%, and the mean absolute percentage deviation (MAPD) of 0.492% for ANN revealed that the current model created with a network topology of 3 : 11 : 1 with tansig (hyperbolic tangent sigmoid) transfer function in the input layer and purelin (pure linear) transfer function in the output layer trained with trainlm (Levenberg–Marquardt) algorithm found to provide the optimal solution with better accuracy in prediction of the output. The physicochemical properties investigated, such as heating value, flashpoint, density, viscosity, iodine number, acid value, saponification value, and cetane index, showed that the extracted oil from the algae spirogyra species can be used as an alternative fuel.
The goal of this research is to increase the performance of AA 7150 reinforced with TiO2 microparticles by optimizing the stir casting parameters. The response surface method's central composite design technique was used to optimize the three stir casting factors of stirring temperature (A), stirring speed (B), and stirring time (C). The ultimate tensile strength, hardness, impact strength, elastic modulus, and compressive strength were all tested. With the aid of analysis of variance, it was discovered that it had a substantial influence on the test samples' characteristics responses. 5 quadratic experiments were linked using factors' characteristics. At a level of 95% confidence, the models were found to be statistically important, and the variations were found to be less than 5%. The response surface was used to assess the parameter interaction profile. Each interaction's contour plots provided a range of stirring settings within which each property may be maximized.
Aluminum alloys are currently used in a wide variety of industries, and strong aluminum alloys are required for the creation of new components. As a result, multiple scientists are experimenting with various compositions of hybrid aluminum metal matrix composites. The purpose of this experiment was to generate hybridization on aluminum alloy 7076 using stir-casting and nano zirconium dioxide and BN reinforcements. Taguchi’s approach was used to optimize the stir-casting process criteria in this investigation. The parameters employed in this investigation were agitation speed, agitation time, and temperature. The chosen constraints are the percentage of reinforcement (0–12%), the agitation speed, the agitation time, and the molten state temperature. We used a wear tester and a Vickers hardness tester to determine the wear and microhardness of the produced stir casting materials. By optimizing wear parameters, the least wear rate is determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.