This paper presents a four-phase passive mixer-first receiver using a common-gate (CG) trans-impedance amplifier (TIA), instead of a conventional shunt-feedback amplifier. The four-transistor TIA used in this work combines current-reuse with cross-coupled g m-boosting to achieve a reduced noise figure (NF) at low power levels. Moreover, complementary derivative-superposition (CDS) linearization within the TIA helps to improve the linearity with no additional power overhead. A prototype receiver is implemented in a 180 nm CMOS technology. The receiver operates from 0.3 to 1.3 GHz with a conversion gain of 21.9 dB. In measurements, the receiver achieved a noise figure of 5.8 dB and an in-band (IB) IIP3 of +7.2 dBm while consuming 0.34 mW power per TIA at 1 GHz. The measured spurious-free dynamic range (SFDR) at 1 GHz is 76.9 dB. INDEX TERMS Common-gate trans-impedance amplifier (TIA), current-reuse, g m-boosting, low-power, mixer-first, N-path filter, passive mixer, tunable, wideband.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.