We report the standoff (up to ~2 m) and remote (~8.5 m) detection of novel high energy materials/explosive molecules (Nitroimidazoles and Nitropyrazoles) using the technique of femtosecond laser induced breakdown spectroscopy (LIBS). We utilized two different collection systems (a) ME-OCT-0007 (commercially available) and (b) Schmidt-Cassegrain telescope for these experiments. In conjunction with LIBS data, principal component analysis was employed to discriminate/classify the explosives and the obtained results in both configurations are compared. Different aspects influencing the LIBS signal strength at far distances such as fluence at target, efficiency of collection system etc. are discussed.
Stark broadening parameters have been estimated for resonant lines of Al(I) using time resolved measurements. The relation between the various emission line characteristics at different phases of opacity have been utilized to obtain the value of plasma temperature and Stark width parameters from the experimental data. The observed value of the center line intensity and Lorentzian component of the line width are compared against a simulated value of these parameters for optically thin case. The plasma temperature and Stark broadening parameters are obtained for the best fit condition by matching the experimentally observed and the simulated values of intensity and line widths. The time resolved measurements result in much better estimates for Stark parameters by allowing multiple points for fitting keeping the number of variables limited. The Stark shift parameters are also obtained from the slope of the plot of observed central wavelength shifts versus observed electron number density which is measured as a function of time. Hence, a method utilizing multiple-time observation data to obtain the Stark broadening parameters for lines showing self-absorption has been demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.