Nowadays, blockchain and Internet of Things (IoT) are two emerging areas of the Information Technology (IT) sector. These two emerging areas are used in various fields, such as supply chain, logistics and automotive industry. Due to the low processing power and storage space of IoT devices, users' medical information is usually saved in a centralized third party like a clinical repository or a cloud computing environment. Thus, in many cases, users lose control of their medical information, which can result in security disclosure and a single-point impediment. So, an advanced solution is required to improve the data sharing process, while restricting it in terms of security. Blockchain technology with IoT can significantly affect the healthcare industry by improving its efficiency, security and transparency, as well as can provide more business opportunities. The efficient sharing of Electronic Health Record (EHR) can improve the treatment process, diagnosis accuracy, security and privacy. This article proposes a blockchain-based IoT architecture to provide enhanced security of healthcare data by using Identity-Based Encryption (IBE) algorithm. Here, the smart contract defines all the basic operations of the healthcare system, which can be beneficial to all stakeholders. Many experiments are executed to evaluate the efficiency of the proposed scheme. The results show that the proposed scheme is better than the existing renowned schemes.
Today, the size of a multimedia file is increasing day by day from gigabytes to terabytes or even petabytes, mainly because of the evolution of a large amount of real-time data. As most of the multimedia files are transmitted through the internet, hackers and attackers try to access the users’ personal and confidential data without any authorization. Thus, maintaining a strong security technique has become a significant concerned to protect the personal information. Deoxyribonucleic Acid (DNA) computing is an advanced field for improving security, which is based on the biological concept of DNA. A novel DNA-based encryption scheme is proposed in this article for protecting multimedia files in the cloud computing environment. Here, a 1024-bit secret key is generated based on DNA computing and the user's attributes and password to encrypt any multimedia file. To generate the secret key, the decimal encoding rule, American Standard Code for Information Interchange value, DNA reference key, and complementary rule are used, which enable the system to protect the multimedia file against many security attacks. Experimental results, as well as theoretical analyses, show the efficiency of the proposed scheme over some well-known existing schemes.
The continuous growth in wireless communication, the demand for sophisticated, simple and low-cost solutions are also increasing. The demand motivated the researchers to indulge into inventing suitable network solutions ranging from wireless sensor networks to wireless ad-hoc networks to Internet of Things (IoT). With the inventions coming from the researchers, the demand for further improvements into the existing researchers have also growth upbound. Initially the network protocols were the demand for research and further improvements. Nevertheless, the IoT devices are started getting used in various fields and started gathering a huge volume of data using complex application. This invites the demands for research on load balancing for IoT networks. Several research attempts were made to overcome the communication overheads caused by the heavy loads on the IoT networks. Theses research attempts proposed to manage the loads in the network by equally distributing the loads among the IoT nodes. Nonetheless, in the due course of time, the practitioners have decided to move the data collected by the IoT nodes and the applications processing those data in to the cloud. Hence, the challenge is to build an algorithm for cloud-based load balancer matching with the demands from the IoT network protocols. Hence, this work proposes a novel algorithm for managing the loads on cloud integrated IoT network frameworks. The proposed algorithm utilizes the analytics of loads on cloud computing environments driven by the physical host machines and the virtual environments. The major challenge addressed by this work is to design a load balancer considering the low availability of the energy and computational capabilities of IoT nodes but with the objective to improve the response time of the IoT network. The proposed algorithm for load balancer is designed considering the low effort integrations with existing IoT framework for making the wireless communication world a better place.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.