HDL is able to displace cell surface-bound hepatic lipase (HL) and stimulate vascular triglyceride (TG) hydrolysis, much like heparin. Displacement appears to be a result of a high-affinity association of HL and apoA-I. HDL varies in its ability to displace HL, and therefore experiments were undertaken to evaluate the impact of HDL composition and structure on HL displacement from cell surface proteoglycans. HDL apolipoprotein and lipid composition directly affect HL displacement. ApoA-II and apoC-I significantly increase HL displacement from the cell surface. While changes in HDL cholesteryl ester and fatty acid content have no effect on HL displacement, increases in HDL phospholipid and TG content significantly inhibit HL displacement. HDL fractions from hyperlipidemic patients are unable to displace HL from the cell surface. These results indicate that the structure and composition of HDL particles in plasma are central to regulation of HL displacement and the hydrolytic activity of HL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.