Developing a new IoT device input method that can reduce the burden on users has become an important issue. This paper proposed a system Stetho Touch that identifies touch actions using acoustic information obtained when a user's finger makes contact with a solid object. To investigate the method, we implemented a prototype of an acoustic sensing device consisting of a low-pressure melamine veneer table, a stethoscope, and an audio interface. The CNN-LSTM classification model of combining CNN and LSTM classified the five touch actions with accuracy 88.26%, f-score 87.26% in LOSO and accuracy 99.39, f-score 99.39 in 18-fold cross-validation. The contributions of this paper are the following; (1) proposed a touch action recognition method using acoustic information that is more natural and accurate than existing methods, (2) evaluated a touch action recognition method using Deep Learning that can be processed in real-time using acoustic time series raw data as input, and (3) proved the compensations for the user dependence of touch actions by providing a learning phase or performing sequential learning during use.
Objective and accurate classification of fear levels is a socially important task that contributes to developing treatments for Anxiety Disorder, Obsessive–compulsive Disorder, Post-Traumatic Stress Disorder (PTSD), and Phobia. This study examines a deep learning model to automatically estimate human fear levels with high accuracy using multichannel EEG signals and multimodal peripheral physiological signals in the DEAP dataset. The Multi-Input CNN-LSTM classification model combining Convolutional Neural Network (CNN) and Long Sort-Term Memory (LSTM) estimated four fear levels with an accuracy of 98.79% and an F1 score of 99.01% in a 10-fold cross-validation. This study contributes to the following; (1) to present the possibility of recognizing fear emotion with high accuracy using a deep learning model from physiological signals without arbitrary feature extraction or feature selection, (2) to investigate effective deep learning model structures for high-accuracy fear recognition and to propose Multi-Input CNN-LSTM, and (3) to examine the model’s tolerance to individual differences in physiological signals and the possibility of improving accuracy through additional learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.