Viscose dyeing is one of the major pollutants of water due to the large amount of salt in the dyeing effluent. This study paves the way for improving environmentally sustainable wool waste and highlights a promising invaluable application through salt-free viscose dyeing. The keratin hydrolysate (KH) was obtained using microwave (MW) alkaline hydrolysis then applied on the viscose fabric in the finishing bath formulation using the pad-cure technique. The rheology of the hydrolyzed wool fibers and the amino acids composition using high-performance liquid chromatograph (HPLC) was estimated; furthermore, the fourier transform infrared spectroscopy (FTIR) of freeze-drying keratin hydrolysate was evaluated. Microwave-assisted keratin hydrolysis leads to the breakdown of peptide bonds and the release of low molecular weight proteins and peptides. The color strength (K/S) of the dyed post-finished viscose fabric increased 75% compared with that dyed by conventional technique. FTIR, scanning electron microscopy (SEM) and energy disperse x-ray spectroscopy (EDX) demonstrated and confirmed the effective finishing of keratin hydrolysate. The tensile strength and elongation of viscose fabric did not change after finishing with KH, while the air permeability improved and the light fastness properties for the modified viscose fabrics.
Sustainability has become a global requirement in all industries. In the textile sector sustainability can be achieved by developing innovative techniques, approaches, and machinery. The current study introduces a sustainable approach for linen dyeing with natural lac dye using microwave heating after the treatment with chitosan as a cationic bio-mordant. The chitosan treatment was carried out by a pad/dry-cure process with citric or acetic acid. Linen samples were characterized by scanning electron microscopy (SEM), and fourier transform infrared spectroscopy (FTIR). The results confirmed the deposition of chitosan on linen fabric with both citric and acetic acid. X-ray diffraction (XRD) was used to determine the change in the crystallinity of linen fabric after chitosan treatment and lac dyeing. The color strength results confirmed the successful application of chitosan as a bio-mordant and the efficiency of microwave heating in shortage the dyeing period in lac dyeing, where the K/S increased from 1.54 to reach 18.86 and 13 with acetic and citric acid, respectively in 7 min. Furthermore, the maximum color strength was achieved at pH 3 of lac dye and the presence of chitosan eliminated the usage of salt in the lac dyeing of linen fabrics. Fastness properties of the lac dyed linen fabrics to wash, light, and perspiration have been discussed. The functional properties (antibacterial activity and UV protection) of linen fabrics were assessed. The antibacterial activity was decreased after the chitosan-treated linen samples were dyed with lac dye. However, the UPF of linen samples was enhanced after lac dyeing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.