High strength concrete (HSC) characterized by high compressive strength but lower ductility compared to normal strength concrete. This low ductility limits the benefit of using HSC in building safe structures. Nanomaterials have gained increased attention because of their improvement of mechanical properties of concrete. In this paper we present an experimental study of the flexural behavior of reinforced beams composed of high-strength concrete and nanomaterials. Eight simply supported rectangular beams were fabricated with identical geometries and reinforcements, and then tested under two third-point loads. The study investigated the concrete compressive strength (50 and 75 N/mm2) as a function of the type of nanomaterial (nanosilica, nanotitanium and nanosilica/nanotitanium hybrid) and the nanomaterial concentration (0%, 0.5% and 1.0%). The experimental results showed that nano particles can be very effective in improving compressive and tensile strength of HSC, nanotitanium is more effective than nanosilica in compressive strength. Also, binary usage of hybrid mixture (nanosilica + nanotitanium) had a remarkable improvement appearing in compressive and tensile strength than using the same percentage of single type of nanomaterials used separately. The reduction in flexural ductility due to the use of higher strength concrete can be compensated by adding nanomaterials. The percentage of concentration, concrete grade and the type of nanomaterials, could predominantly affect the flexural behavior of HSRC beams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.