Desynchronization is a novel primitive for sensor networks: it implies that nodes perfectly interleave periodic events to occur in a round-robin schedule. This primitive can be used to evenly distribute sampling burden in a group of nodes, schedule sleep cycles, or organize a collision-free TDMA schedule for transmitting wireless messages. Here we present Desync, a biologically-inspired self-maintaining algorithm for desynchronization in a single-hop network. We present (1) theoretical results proving convergence and bounding convergence rates, (2) experimental results on TinyOS-based Telos sensor motes, and (3) a Desync-based TDMA protocol. Desync-TDMA addresses two weaknesses of traditional TDMA: it does not require a global clock and it automatically adjusts to the number of participating nodes, so that bandwidth is always fully utilized. Experimental results show a reduction in message loss under high contention from approximately 58% to less than 1%, as well as a 25% increase in throughput over the default Telos MAC protocol.
Abstract-We present a scalable approach to optimizing robot control policies for a target collective behavior in a spatially inhomogeneous robotic swarm. The approach can incorporate robot feedback to maintain system performance in an unknown environmental flow field. We consider systems in which the robots follow both deterministic and random motion and transition stochastically between tasks. Our methodology is based on an abstraction of the swarm to a macroscopic continuous model, whose dimensionality is independent of the population size, that describes the expected time evolution of swarm subpopulations over a discretization of the environment. We incorporate this model into a stochastic optimization method and map the optimized model parameters onto the robot motion and task transition control policies to achieve a desired global objective. We illustrate our methodology with a scenario in which the behaviors of a swarm of robotic bees are optimized for both uniform and nonuniform pollination of a blueberry field, including in the presence of an unknown wind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.