A wavelet-chaos methodology is presented for analysis of EEGs and delta, theta, alpha, beta, and gamma subbands of EEGs for detection of seizure and epilepsy. The nonlinear dynamics of the original EEGs are quantified in the form of the correlation dimension (CD, representing system complexity) and the largest Lyapunov exponent (LLE, representing system chaoticity). The new wavelet-based methodology isolates the changes in CD and LLE in specific subbands of the EEG. The methodology is applied to three different groups of EEG signals: 1) healthy subjects; 2) epileptic subjects during a seizure-free interval (interictal EEG); 3) epileptic subjects during a seizure (ictal EEG). The effectiveness of CD and LLE in differentiating between the three groups is investigated based on statistical significance of the differences. It is observed that while there may not be significant differences in the values of the parameters obtained from the original EEG, differences may be identified when the parameters are employed in conjunction with specific EEG subbands. Moreover, it is concluded that for the higher frequency beta and gamma subbands, the CD differentiates between the three groups, whereas for the lower frequency alpha subband, the LLE differentiates between the three groups.
A novel wavelet-chaos-neural network methodology is presented for classification of electroencephalograms (EEGs) into healthy, ictal, and interictal EEGs. Wavelet analysis is used to decompose the EEG into delta, theta, alpha, beta, and gamma sub-bands. Three parameters are employed for EEG representation: standard deviation (quantifying the signal variance), correlation dimension, and largest Lyapunov exponent (quantifying the non-linear chaotic dynamics of the signal). The classification accuracies of the following techniques are compared: (1) unsupervised k-means clustering; (2) linear and quadratic discriminant analysis; (3) radial basis function neural network; (4) Levenberg-Marquardt backpropagation neural network (LMBPNN). To reduce the computing time and output analysis, the research was performed in two phases: band-specific analysis and mixed-band analysis. In phase two, over 500 different combinations of mixed-band feature spaces consisting of promising parameters from phase one of the research were investigated. It is concluded that all three key components of the wavelet-chaos-neural network methodology are important for improving the EEG classification accuracy. Judicious combinations of parameters and classifiers are needed to accurately discriminate between the three types of EEGs. It was discovered that a particular mixed-band feature space consisting of nine parameters and LMBPNN result in the highest classification accuracy, a high value of 96.7%.
A novel principal component analysis (PCA)-enhanced cosine radial basis function neural network classifier is presented. The two-stage classifier is integrated with the mixed-band wavelet-chaos methodology, developed earlier by the authors, for accurate and robust classification of electroencephalogram (EEGs) into healthy, ictal, and interictal EEGs. A nine-parameter mixed-band feature space discovered in previous research for effective EEG representation is used as input to the two-stage classifier. In the first stage, PCA is employed for feature enhancement. The rearrangement of the input space along the principal components of the data improves the classification accuracy of the cosine radial basis function neural network (RBFNN) employed in the second stage significantly. The classification accuracy and robustness of the classifier are validated by extensive parametric and sensitivity analysis. The new wavelet-chaos-neural network methodology yields high EEG classification accuracy (96.6%) and is quite robust to changes in training data with a low standard deviation of 1.4%. For epilepsy diagnosis, when only normal and interictal EEGs are considered, the classification accuracy of the proposed model is 99.3%. This statistic is especially remarkable because even the most highly trained neurologists do not appear to be able to detect interictal EEGs more than 80% of the times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.