A method is presented for time-frequency signal analysis of earthquake records using Mexican hat wavelets. Ground motions in earthquakes are postulated as a sequence of simple penny-shaped ruptures at different locations along a fault line and occurring at different times. The single point source displacement of ground motion is idealized by a Gaussian function. For the purpose of signal analysis of accelerograms, the ground motion record generated by a simple penny-shaped rupture is used to form the basis wavelet function. After a careful study of the characteristics of various wavelet functions, the Mexican hat wavelet was found to be the most appropriate wavelet basis function to represent the acceleration of a single point source rupture. The result of the signal processing of an accelerogram is presented in the form of a scalogram using the coefficients of the continuous Mexican hat wavelet transform to describe the signal energy in the time-scale domain. The proposed signal processing methodology can be used to investigate the characteristics of accelerograms recorded on various types of sites and their effects on different types of structures.
ABSTRACT:The authors recently developed a method for timefrequency signal analysis of earthquake records using Mexican hat wavelets. Ground motions in earthquakes are postulated as a sequence of simple penny-shaped ruptures at different locations along a fault line and occurring at different times. In this article, a wavelet energy spectrum is proposed for time-frequency localization of the earthquake input energy. The ground acceleration generated by a simple penny-shaped rupture is used as the basis to form the mother wavelet. The symmetric Mexican hat wavelet is chosen as the mother wavelet. The spectrum is presented pictorially in a two-dimensional, time-frequency domain. The proposed wavelet energy spectrum can be used to observe the evolution of the frequency contents of earthquake energy over time and distance of the site from the epicenter in a more accurate manner than the traditional time series (accelerogram) or frequency domain (Fourier amplitude spectrum) representation. It can be viewed as a microscope for looking into the timefrequency characteristics of earthquake acceleration records. The wavelet energy spectrum provides frequency evolution information to be used in the structural design process.
Authors can share their preprint anywhere at any time. If accepted for publication, we encourage authors to link from the preprint to their formal publication via its Digital Object Identifier (DOI). Millions of researchers have access to the formal publications on ScienceDirect, and so links will help your users to find, access, cite, and use the best available version. Authors can update their preprints on arXiv or RePEc with their accepted manuscript .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.