The objectives of the current study were to compare intra-socket pressure differences between comfortable and uncomfortable socket conditions, and the usefulness of subject perception of satisfaction, activity limitations, and socket comfort in distinguishing between these two socket conditions. Five unilateral trans-tibial amputees took part in the study. They answered the Socket Comfort Score (SCS) and Trinity Amputation and Prosthetic Experience Scale (TAPES) questionnaires before the interface pressure (in standing and walking) was measured for the uncomfortable socket condition at five regions of the residual limb. Participants were then provided with a comfortable socket and wore it for two weeks. Participants who were satisfied with the socket fit after two weeks repeated the SCS and TAPES questionnaires and interface pressure measurements. The differences between the test results of the two conditions were not statistically significant, except for the interface pressure at the popliteal region during the early stance phase, TAPES socket fit subscale, and the SCS. Due to large variability of the data and the lack of statistical significance, no firm conclusion can be made on the possible relationship between the interface pressure values and the patient-reported outcomes of the two socket conditions. A larger sample size and longer acclimation period are required to locate significant differences.
The objectives of current study were to a) assess similarities and relationships between anatomical landmark-based angles and distances of lower limbs in unilateral transtibial amputees and b) develop and evaluate a new anatomically based static prosthetic alignment method. First substudy assessed the anthropometrical differences and relationships between the lower limbs in the photographs taken from amputees. Data were analyzed via paired t-test and regression analysis. Results show no significant differences in frontal and transverse planes. In the sagittal plane, the anthropometric parameters of the amputated limb were significantly correlated to the corresponding variables of the sound limb. The results served as bases for the development of a new prosthetic alignment method. The method was evaluated on a single-subject study. Prosthetic alignment carried out by an experienced prosthetist was compared with such alignment adjusted by an inexperienced prosthetist but with the use of the developed method. In sagittal and frontal planes, the socket angle was tuned with respect to the shin angle, and the position of the prosthetic foot was tuned in relation to the pelvic landmarks. Further study is needed to assess the proposed method on a larger sample of amputees and prosthetists.
Diabetic ulcers can lead to infection and amputation. Using insole can help to reduce and prevent foot ulceration and amputation in a diabetic patient. The aim of this study was to analyze the effect of wearing an insole with different density on standing and walking plantar pressure distribution. Methods: A group of 10 diabetic patients participated in this one-grouped before-after trial. Plantar pressure distribution was measured during walking and standing. Repeated Measure was used to test differences. Results: Repeated measure test showed that use of insole decreased foot pressure while walking significantly ([Formula: see text]). Pairwise comparison showed that wearing shoe insole with shore 30 decreased pressure compared to wearing shoe insole with shore 50 ([Formula: see text]) and walking without insole respectively ([Formula: see text]). Conclusion: The insole has more effect on plantar pressure during walking than standing, it also concluded that insole with shore 30 decreased pressure during walking more than that of the insole with shore 50. It could be said that patients who suffer from pain and discomfort on hind and forefoot may benefit insole with shore 30 to relieve from plantar pressure on the hindfoot and forefoot regions during standing and walking.
Prosthetic alignment is a subjective concept which lacks reliability. The outcome responsiveness to prosthetic alignment quality could help to improve subjective and instrument assisted prosthetic alignment. This study was aimed to review variables used to assess clinically acceptable alignment in the literature. The search was done in some databases including: Google Scholar, PubMed, EBSCO, EMBASE, ISI Web of Knowledge and Scopus. The first selection criterion was based on abstracts and titles to address the research questions of interest. The American Academy of Orthotics and Prosthetics checklists were used for paper risk of bias assessment. A total of 25 studies were included in this study. Twenty-four studies revealed the critics of standing position or walking to locate clinically acceptable alignment, only one study measured outcomes in both situations. A total of 253 adults with transtibial amputations and mean age of 48.71 years participated in included studies. The confidence level of included studies was low to moderate, and before-after trial was the most common study design (n = 19). The joint angle, load line location with respect to joints and center of pressure-related parameters were reported as sensitive outcomes to prosthetic alignment quality in standing posture. The amount of forces at various parts of gait cycle and time of events were sensitive to prosthetic alignment quality during walking. Standing balance and posture and temporal parameters of walking could help to locate clinically acceptable alignment.
Introduction An ideal functional brace for anterior cruciate ligament-deficient (ACLD) patients should control anterior movement of the tibia and simultaneously decrease the effects of ground reaction shearing force. The current study was aimed to compare the interface pressure between the anterior shell of a functional brace and proximal of tibia in both sound and ACLD limbs, and to assess the effect of using functional brace on the symmetry of vertical and anteroposterior components of ground reaction force and impulse of ground reaction force during level walking. Methods Seven unilateral ACLD men participated in this study. The interface pressure between the anterior shell and proximal of the tibia and ground reaction force was recorded by means of Novel Pliance X and Kistler force platform, respectively. Wilcoxon ranked-sign test and factor analysis repeated measure analysis of variance were used to analyze data. Results The use of functional brace had no significant effect on interface pressure and peak points of the ground reaction force. By use of a functional brace, the valley and the impulse of the vertical component of ground reaction force on ACLD limb increased significantly (P < 0.05) and also improved limb symmetry of all parameters. The interface pressure was greater at distal contact points of the shell, which are at the middle level of the tibia crest. Conclusions The results suggest that functional brace could not apply force on proximal tibia especially at ACLD limb and therefore could not normalize vertical component of ground reaction force during level walking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.