Hypertension (HTN) is the medical term for high blood pressure. It is dangerous because it makes the heart work too hard and contributes to atherosclerosis (hardening of arteries), besides increasing the risk of heart disease and stroke. HTN can also lead to other conditions such as congestive heart failure, kidney disease, and blindness. Conventional antihypertensives are usually associated with many side effects. About 75 to 80% of the world population use herbal medicines, mainly in developing countries, for primary health care because of their better acceptability with human body and lesser side effects. In the last three decades, a lot of concerted efforts have been channeled into researching the local plants with hypotensive and antihypertensive therapeutic values. The hypotensive and antihypertensive effects of some of these medicinal plants have been validated and others disproved. However, ayurvedic knowledge needs to be coupled with modern medicine and more scientific research needs to be done to verify the effectiveness, and elucidate the safety profile of such herbal remedies for their antihypertensive potential.
Skin diseases are numerous and a frequently occurring health problem affecting all ages from the neonates to the elderly and cause harm in number of ways. Maintaining healthy skin is important for a healthy body. Many people may develop skin diseases that affect the skin, including cancer, herpes and cellulitis. Some wild plants and their parts are frequently used to treat these diseases. The use of plants is as old as the mankind. Natural treatment is cheap and claimed to be safe. It is also suitable raw material for production of new synthetic agents. A review of some plants for the treatment of skin diseases is provided that summarizes the recent technical advancements that have taken place in this area during the past 17 years.
Neurodegeneration leads to the loss of structural and functioning components of neurons over time. Various studies have related neurodegeneration to a number of degenerative disorders. Neurological repercussions of neurodegeneration can have severe impacts on the physical and mental health of patients. In the recent past, various neurodegenerative ailments such as Alzheimer’s and Parkinson’s illnesses have received global consideration owing to their global occurrence. Environmental attributes have been regarded as the main contributors to neural dysfunction-related disorders. The majority of neurological diseases are mainly related to prenatal and postnatal exposure to industrially produced environmental toxins. Some neurotoxic metals, like lead (Pb), aluminium (Al), Mercury (Hg), manganese (Mn), cadmium (Cd), and arsenic (As), and also pesticides and metal-based nanoparticles, have been implicated in Parkinson’s and Alzheimer’s disease. The contaminants are known for their ability to produce senile or amyloid plaques and neurofibrillary tangles (NFTs), which are the key features of these neurological dysfunctions. Besides, solvent exposure is also a significant contributor to neurological diseases. This study recapitulates the role of environmental neurotoxins on neurodegeneration with special emphasis on major neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease.
The present antiepileptic drugs pose several problems in the management of seizures owing to their meager neuroprotective potential, adverse effects on bone, detrimental effects on cognitive function, chronic toxicity, drug interactions, side effects including aggression, agitation, and irritability and sometimes exacerbation of seizures. We followed up progressive preclinical investigation in mice against pilocarpine (PILO)-induced status epilepticus (SE) and temporal lobe epilepsy (TLE). To determine the response of raloxifene (RF) (4 and 8 mg/kg), fluoxetine (FT) (14 and 22 mg/kg), bromocriptine (BC) (6 and 10 mg/kg), and their low-dose combinations, oral treatment was scheduled for 28 days followed by PILO (300 mg/kg, i.p). The response was stalked for intensive behavioral monitoring of convulsions, hippocampal neuropeptide Y (NPY), and oxidative stress discernment along with histomorphological studies. The resultant data confirmed the therapeutic potential of triple drug combination of raloxifene (4 mg/kg) with fluoxetine (14 mg/kg) and bromocriptine (6 mg/kg) compared to monotherapy with raloxifene (4 mg/kg), and bromocriptine (6 mg/kg) as otherwise monotherapy with fluoxetine (14 mg/kg) was ineffective to suppress convulsions; an effect better than sodium valproate (300 mg/kg), a standard AED, was validated. Most profoundly, PILO-induced compensatory increases in hippocampal NPY levels (20.01%), which was escalated (100%) with the triple drug combination. The same pattern of results was superseded for oxidative stress indices and neuronal damage. The results for the first time demonstrate the propitious role of triple drug combination in the management of SE and TLE. Therapeutically, this enhancing profile of drugs fosters a safer and more effective drug-combination regimen. Graphical abstract ᅟ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.