Arabinogalactan-proteins (AGPs) are extracellular proteoglycans, which are presumed to participate in the regulation of cell shape, thus contributing to the excellent mechanical properties of plants. AGPs consist of a hydroxyprolinerich core-protein and large arabinogalactan (AG) sugar chains, called type II AGs. These AGs have a β-1,3-galactan backbone and β-1,6-galactan side chains, to which other sugars are attached. The structure of type II AG differs depending on source plant, tissue, and age. Type II AGs obtained from woody plants in large quantity as represented by gum arabic and larch AG, here designated gum arabic-subclass, have a β-1,3;1,6-galactan structure in which the β-1,3-galactan backbone is highly substituted with short β-1,6-galactan side chains. On the other hand, it is unclear whether type II AGs found as the glycan part of AGPs from herbaceous plants, here designated AGP-subclass, also have conserved β-1,3:1,6-galactan structural features. In the present study we explore similarities of type II AG structures in the AGP-subclass. Type II AGs in fractions obtained from spinach, broccoli, bok choy, komatsuna, and cucumber were hydrolyzed into galactose and β-1,6-galactooligosaccharides by specific enzymes. Based on the proportion of these sugars, the substitution ratio of the β-1,3-galactan backbone was calculated as 46-58% in the five vegetables, which is consistently lower than what is seen in gum arabic and larch AG. Although most side chains were short, long chains such as β-1,6-galactohexaose chains were also observed in these vegetables. The results suggest a conserved β-1,3;1,6-galactan structure in the AGP-subclass that distinguishes it from the gum arabic-subclass.
Cell-wall polysaccharides are synthesized from nucleotide sugars by glycosyltransferases.However, in what way the level of nucleotide sugars affects the structure of the polysaccharides is not entirely clear. guanosine diphosphate (GDP)-mannose (GDP-Man) is one of the major nucleotide sugars in plants and serves as a substrate in the synthesis of mannan polysaccharides. GDP-Man is synthesized from mannose 1-phosphate and GTP by a GDP-Man pyrophosphorylase, VITAMIN C DEFECTIVE1 (VTC1), which is positively regulated by the interacting protein KONJAC1 (KJC1) in Arabidopsis. Since seed-coat mucilage can serve as a model of the plant cell wall, we examined the influence of vtc1 and kjc1 mutations on the synthesis of mucilage galactoglucomannan. Sugar composition analysis showed that mannose content in adherent mucilage of kjc1 and vtc1 mutants was only 42% and 11% of the wild-type, respectively, indicating a drastic decrease of galactoglucomannan. On the other hand, structural analysis based on specific oligosaccharides released by endo-β-1,4-mannanase indicated that galactoglucomannan had a patterned glucomannan backbone consisting of alternating residues of glucose and mannose and the frequency of α-galactosyl branches was also similar to the wild type structure. These results suggest that the structure of mucilage galactoglucomannan is mainly determined by properties of glycosyltransferases rather than the availability of nucleotide sugars. | INTRODUCTIONMucilage extruded from the seed-coat epidermis is a gelatinous compound that helps seeds to germinate. In Arabidopsis, pectin RG-I and homogalacturonan account for most seed-coat mucilage (Naran et al., 2008), but other polysaccharides, including cellulose and galactoglucomannan, also play important roles in the conformation of mucilage and adhesion to the seed (Griffiths
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.