Yariv phenylglycosides [1,3,5-tri(p-glycosyloxyphenylazo)-2,4,6-trihydroxybenzene] are a group of chemical compounds that selectively bind to arabinogalactan proteins (AGPs), a type of plant proteoglycan. Yariv phenylglycosides are widely used as cytochemical reagents to perturb the molecular functions of AGPs as well as for the detection, quantification, purification, and staining of AGPs. However, the target structure in AGPs to which Yariv phenylglycosides bind has not been determined. Here, we identify the structural element of AGPs required for the interaction with Yariv phenylglycosides by stepwise trimming of the arabinogalactan moieties using combinations of specific glycoside hydrolases. Whereas the precipitation with Yariv phenylglycosides (Yariv reactivity) of radish (Raphanus sativus) root AGP was not reduced after enzyme treatment to remove a-L-arabinofuranosyl and b-glucuronosyl residues and b-1,6-galactan side chains, it was completely lost after degradation of the b-1,3-galactan main chains. In addition, Yariv reactivity of gum arabic, a commercial product of acacia (Acacia senegal) AGPs, increased rather than decreased during the repeated degradation of b-1,6-galactan side chains by Smith degradation. Among various oligosaccharides corresponding to partial structures of AGPs, b-1,3-galactooligosaccharides longer than b-1,3-galactoheptaose exhibited significant precipitation with Yariv in a radial diffusion assay on agar. A pull-down assay using oligosaccharides cross linked to hydrazine beads detected an interaction of b-1,3-galactooligosaccharides longer than b-1,3-galactopentaose with Yariv phenylglycoside. To the contrary, no interaction with Yariv was detected for b-1,6-galactooligosaccharides of any length. Therefore, we conclude that Yariv phenylglycosides should be considered specific binding reagents for b-1,3-galactan chains longer than five residues, and seven residues are sufficient for cross linking, leading to precipitation of the Yariv phenylglycosides.Arabinogalactan proteins (AGPs) are a type of plant proteoglycans consisting of a Hyp-rich core protein and large arabinogalactan (AG) moieties (Fincher et al., 1983;Nothnagel, 1997). Although there are many molecular species of AGP differentiated by their core proteins, the AG moieties commonly comprise b-1,3-galactan main chains and b-1,6-galactan side chains, to which L-Ara and other auxiliary sugars, such as GlcA, 4-O-methyl-GlcA, L-Fuc, L-Rha, and Xyl, are attached (Fincher et al., 1983;Nothnagel, 1997;Seifert and Roberts, 2007). A commercial product of AGPs prepared from the acacia (Acacia senegal) tree is known as gum arabic and utilized as a food stabilizer. In the Japanese herbal remedy Juzen-Taiho-To, AGs from Astragalus membranaceus are the active ingredient (Majewska-Sawka and Nothnagel, 2000;Kiyohara et al., 2002). In intact plants, AGPs are implicated in various physiological events and serve as extracellular constituents and signaling molecules. For instance, an AGP from stylar transmitting tissue attracts pollen tub...
Hemicelluose polysaccharides influence assembly and properties of the plant primary cell wall (PCW), perhaps by interacting with cellulose to affect the deposition and bundling of cellulose fibrils. However, the functional differences between plant cell wall hemicelluloses such as glucomannan, xylan and xyloglucan (XyG) remain unclear. As the most abundant hemicellulose, XyG is considered important in eudicot PCWs, but plants devoid of XyG show relatively mild phenotypes. We report here that a patterned β-galactoglucomannan (β-GGM) is widespread in eudicot PCWs and shows remarkable similarities to XyG. The sugar linkages forming the backbone and side chains of β-GGM are analogous to those that make up XyG, and moreover, these linkages are formed by glycosyltransferases from the same CAZy families. Solid-state nuclear magnetic resonance indicated that β-GGM shows low mobility in the cell wall, consistent with interaction with cellulose. Although Arabidopsis β-GGM synthesis mutants show no obvious growth defects, genetic crosses between β-GGM and XyG mutants produce exacerbated phenotypes compared to XyG mutants. These findings demonstrate a related role of these two similar but distinct classes of hemicelluloses in PCWs. This work opens avenues to study the roles of β-GGM and XyG in PCWs.
Humans are unable to synthesize L-ascorbic acid (AsA), yet it is required as a cofactor in many critical biochemical reactions. The majority of human dietary AsA is obtained from plants. In Arabidopsis thaliana, a GDP-mannose pyrophosphorylase (GMPP), VITAMIN C DEFECTIVE1 (VTC1), catalyzes a rate-limiting step in AsA synthesis: the formation of GDP-Man. In this study, we identified two nucleotide sugar pyrophosphorylase-like proteins, KONJAC1 (KJC1) and KJC2, which stimulate the activity of VTC1. The kjc1kjc2 double mutant exhibited severe dwarfism, indicating that KJC proteins are important for growth and development. The kjc1 mutation reduced GMPP activity to 10% of wild-type levels, leading to a 60% reduction in AsA levels. On the contrary, overexpression of KJC1 significantly increased GMPP activity. The kjc1 and kjc1kjc2 mutants also exhibited significantly reduced levels of glucomannan, which is also synthesized from GDP-Man. Recombinant KJC1 and KJC2 enhanced the GMPP activity of recombinant VTC1 in vitro, while KJCs did not show GMPP activity. Yeast two-hybrid assays suggested that the stimulation of GMPP activity occurs via interaction of KJCs with VTC1. These results suggest that KJCs are key factors for the generation of GDP-Man and affect AsA level and glucomannan accumulation through the stimulation of VTC1 GMPP activity.
Through the analysis of mutants and recombinant enzymes expressed in Pichia yeast, an Arabidopsis β-l-arabinopyranosidase and α-d-galactosidases are shown to be responsible for the hydrolysis of β-l-arabinopyranosyl residues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.