Simultaneous determination of nitrite (NO2-), nitrate (NO3-), thiocyanate (SCN-) and uric acid in human saliva was performed by capillary zone electrophoresis using a coated capillary with reversed electroosmotic flow (EOF), using a 100 mM sodium phosphate buffer at pH 6.5 as a running buffer. Saliva samples were deproteinized with acetonitrile and filtered through a membrane filter. The important advantages of the reported method are: simple operation, short analysis time, minimal sample pre-treatment and sample dilution. In order to evaluate the daily variations of the anionic components, the concentrations were determined in the human saliva of four healthy volunteers upon waking and at 2qh intervals during a day.
Recently, microfluidic lab-on-a-CD (LabCD) has attracted attentions of researchers for its potential for pumpless, compact, and chip-inclusive on-site bioassay. To control the fluids in the LabCD, microvalves such as capillary, hydrophobic, siphon, and sacrificial valves have been employed. However, no microvalve can regulate more than one channel. In a complicated bioassay with many sequential mixing, washing, and wasting steps, thus, an intricate fluidic network with many microchannels, microvalves, and reservoirs is required, which increases assay costs in terms of both system development and chip preparation. To address this issue, we developed a rotatable reagent cartridge (RRC), which was a column-shaped tank and has several rooms to store different reagents. By embedding and rotating the RRC in the LabCD with a simple mechanical force, only the reagent in the room connected to the following channel was injected. By regulating the angle of the RRC to the LabCD, conservation and ejection of each reagent could be switched. Our developed RRC had no air vent hole, which was achieved by the gas-permeable gap between the bottle and cap parts of the RRC. The RRC could inject 230 nL-10 μL of reagents with good recoveries more than 96%. Finally, an enzymatic assay of L-lactate was demonstrated, where the number of valves and reservoirs were well minimized, significantly simplifying the fluidic system and increasing the channel integratability. Well quantitative analyses of 0-100 μM L-lactate could easily be carried out with R(2) > 0.999, indicating the practical utility of the RRC for microfluidic bioanalysis.
A plasmonic chip, which is a grating substrate coated with metal films, was fabricated and applied to grating-coupled surface-plasmon-fieldenhanced fluorescence imaging (GC-SPFI). With the enhanced fluorescence excited by the surface plasmon field on the plasmonic chip, interleukin-6 (IL-6), a marker protein of lifestyle-related diseases, was measured using a sandwich assay system. IL-6 was quantitatively determined to be up to 2 pg/mL by GC-SPFI. The detection sensitivity for IL-6 was superior to that with an enzyme-linked immunosorbent assay, and GC-SPFI was shown to be a valid method for immunosensing.
On-site quantitative analyses of microorganisms (including viruses) by the polymerase chain reaction (PCR) system are significantly influencing medical and biological research. We have developed a remarkably rapid and portable real-time PCR system that is based on microfluidic approaches. Real-time PCR using TaqMan probes consists of a complex reaction. Therefore, in a rapid real-time PCR, the optimum DNA polymerase must be estimated by using actual real-time PCR conditions. In this study, we compared the performance of three DNA polymerases in actual PCR conditions using our rapid real-time PCR system. Although KAPA2G Fast HS DNA Polymerase has the highest enzymatic activity among them, SpeedSTAR HS DNA Polymerase exhibited better performance to rapidly increase the fluorescence signal in an actual real-time PCR using TaqMan probes. Furthermore, we achieved rapid detection of Escherichia coli in 7 min by using SpeedSTAR HS DNA Polymerase with the same sensitivity as that of a conventional thermal cycler.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.