Forest carbon sequestration offset protocols have been employed for more than 20 years with limited success in slowing deforestation and increasing forest carbon trading volume. Direct measurement of forest carbon flux improves quantification for trading but has not been applied to forest carbon research projects with more than 600 site installations worldwide. In this study, we apply carbon accounting methods, scaling hours to decades to 28-years of scientific CO2 eddy covariance data for the Harvard Forest (US-Ha1), located in central Massachusetts, USA, establishing commercial carbon trading protocols and applications for similar sites. We illustrate and explain transactions of high-frequency direct measurement for CO2 net ecosystem exchange (NEE, gC m−2 year−1) that track and monetize ecosystem carbon dynamics in contrast to approaches that rely on forest mensuration and growth models. NEE, based on eddy covariance methodology, quantifies loss of CO2 by ecosystem respiration accounted for as an unavoidable debit to net carbon sequestration. Retrospective analysis of the US-Ha1 NEE times series including carbon pricing, interval analysis, and ton-year exit accounting and revenue scenarios inform entrepreneur, investor, and landowner forest carbon commercialization strategies. CO2 efflux accounts for ~45% of US-Ha1 NEE, or an error of ~466% if excluded; however, the decades-old coupled human and natural system remains a financially viable net carbon sink. We introduce isoflux NEE for t13C16O2 and t12C18O16O to directly partition and quantify daytime ecosystem respiration and photosynthesis, creating new soil carbon commerce applications and derivative products in contrast to undifferentiated bulk soil carbon pool approaches. Eddy covariance NEE methods harmonize and standardize carbon commerce across diverse forest applications including, a New England, USA regional eddy covariance network, the Paris Agreement, and related climate mitigation platforms.
Forest carbon sequestration is a widely accepted natural climate solution. However, methods to determine net carbon offsets are based on commercial carbon proxies or CO2 eddy covariance research with limited methodological comparisons. Non-CO2 greenhouse gases (GHG) (e.g., CH4, N2O) receive less attention in the context of forests, in part, due to carbon denominated proxies and to the cost for three-gas eddy covariance platforms. Here we describe and analyze results for direct measurement of CO2, CH4, and N2O by eddy covariance and forest carbon estimation protocols at the Howland Forest, ME, the only site where these methods overlap. Limitations of proxy-based protocols, including the exclusion of sink terms for non-CO2 GHGs, applied to the Howland project preclude multi-gas forest products. In contrast, commercial products based on direct measurement are established by applying molecule-specific social cost factors to emission reductions creating a new forest offset (GHG-SCF), integrating multiple gases into a single value of merit for forest management of global warming. Estimated annual revenue for GHG-SCF products, applicable to the realization of a Green New Deal, range from ~$120,000 USD covering the site area of ~557 acres in 2021 to ~$12,000,000 USD for extrapolation to 40,000 acres in 2040, assuming a 3% discount rate. In contrast, California Air Resources Board compliance carbon offsets determined by the Climate Action Reserve protocol show annual errors of up to 2256% relative to eddy covariance data from two adjacent towers across the project area. Incomplete carbon accounting, offset over-crediting and inadequate independent offset verification are consistent with error results. The GHG-SCF product contributes innovative science-to-commerce applications incentivizing restoration and conservation of forests worldwide to assist in the management of global warming.
Forest carbon sequestration is a widely accepted natural climate solution, however, methods to determine net carbon offsets are limited to commercial carbon proxies and CO2 eddy covariance research. Non-CO2 greenhouse gases (GHG) (e.g., CH4, N2O) receive less attention in the context of forests, in part, due to emphasis on CO2 and the operational requirements and cost for three-gas eddy covariance platforms. In this study, Howland forest flux tower (CO2, CH4) and soil flux data (CO2, CH4, N2O), representing net emission reductions, are linked to their respective social costs to estimate commercial revenue if sold as a GHG social cost forest offset product (GHG-SCF). Estimated annual revenue for GHG-SCF products, applicable to realization of a Green New Deal, range from ~$120,000 covering the site area of ~557 acres in 2021, to ~$12,000,000 for extrapolation to 40,000 acres in 2040, assuming a 3% discount rate. The Howland Forest CO2 flux record for two adjacent towers is compared to California Air Resources Board forest carbon proxy data for compliance sequestration offsets, the only project site where these approaches overlap. Overcrediting, incomplete carbon accounting with annual errors of up to 2,256%, inadequate third-party verification, and limited application to non-CO2 GHG’s are established. In contrast, direct measurement of one or more GHG’s offers new forest products and revenue incentives to restore and conserve forests worldwide.
Despite the use of commercial forest carbon protocols (CFCPs) for more than two decades, claiming ~566 MMtCO2e and a market value of ~USD $15.7 billion, comparative analysis of CFCP methodology and offset results is limited. In this study, five widely used biometric-based CFCPs are characterized, and common characteristics and differences are identified. CFCP claims of net forest carbon sequestration are compared with results of directly measured CO2 by eddy covariance, a meteorological method integrating gross vertical fluxes of forest and soil carbon, and the only alternative non-biometric source of net forest carbon sequestration data available. We show here that CFCPs share a structural feature delimiting forest carbon values by zero-threshold carbon accounting (gC m-2 ≤ 0), a pattern opposite to natural emissions of forest CO2 exchange based on direct measurement and a fundamental biological constraint on net forest carbon storage (i.e., soil efflux, ecosystem respiration). Exclusion of forest CO2 sources to the atmosphere precludes net carbon accounting, resulting in unavoidable over-crediting of CFCP project offsets. CFCP carbon results are significantly different from global forest CO2 net ecosystem exchange population results (FluxNet2015 gC m-2) at the 95% to 99.99% confidence levels, inferring an annual median error of ~247% (gC m-2), consistent with over-crediting. Direct CO2 measurement provides an urgently needed alternative method for commercial forest carbon products that has the potential to harmonize global markets and catalyze the role of forests in managing climate change through nature-based solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.