Gelatin, one of the most abundant, naturally derived biomacromolecules from collagen, is widely applicable in food additives, cosmetic ingredients, drug formulation, and wound dressing based on their non-toxicity and biodegradability. In parallel, polyvinyl alcohol (PVA), a synthetic polymer, has been commonly applied as a thickening agent for coating processes in aqueous systems and a major component in healthcare products for cartilage replacements, eye lubrication, and contact lenses. In this study, a new type of mixed hydrogel nanofiber was fabricated from gelatin and polyvinyl alcohol by electrospinning under a feasible range of polymer compositions. To determine the optimal composition of gelatin and polyvinyl alcohol in nanofiber fabrication, several key physicochemical properties of mixed polymer solutions such as viscosity, surface tension, pH, and electrical conductance were thoroughly characterized by a viscometer, surface tensiometer, water analyzer, and carbon electron probe. Moreover, the molecular structures of polymeric chains within mixed hydrogel nanofibers were investigated with Fourier-transform infrared spectroscopy. The morphologies and surface elemental compositions of the mixed hydrogel nanofibers were examined by the scanning electron microscope and energy-dispersive X-ray spectroscopy, respectively. The measurement of water contact angles was performed for measuring the hydrophilicity of nanofiber surfaces. Most importantly, the potential cytotoxicity of the electrospun nanofibers was evaluated by the in vitro culture of 3T3 fibroblasts. Through our extensive study, it was found that a PVA-rich solution (a volumetric ratio of gelatin/polyvinyl alcohol <1) would be superior for the efficient production of mixed hydrogel nanofibers by electrospinning techniques. This result is due to the appropriate balance between the higher viscosity (~420–~4300 10−2 poise) and slightly lower surface tension (~35.12–~32.68 mN/m2) of the mixed polymer solution. The regression on the viscosity data also found a good fit by the Lederer–Rougier’s model for a binary mixture. For the hydrophilicity of nanofibers, the numerical analysis estimates that the value of interfacial energy for the water contact on nanofibers is around ~−0.028 to ~−0.059 J/m2.
In this study, vanadium oxynitride thin films were deposited by reactive magnetron sputtering using pure vanadium targets, Ar as a plasma carrier, and a mix of N2 and O2 as reactive gases. Various ratios of mass flow rates between two reactive gases were maintained as a constant during the process. To obtain crystalline phases of oxynitrides, rapid thermal annealing in Ar atmosphere at 600 °C and 700 °C for 5 min was conducted after the deposition. This study aims to define the range of the process parameters of magnetron sputtering to deposit vanadium oxynitride thin films. The assessment for the characterization of films utilizes the surface profiler, scanning electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, four-point probe, Hall analyzer, and UV-visible-NIR spectrometer. Experimental results reveal that the annealed films can be oxynitrides when the oxygen flow rate is below 0.25 sccm, and the ratio of oxygen/nitrogen is no more than ~1/10. The annealed vanadium oxynitride films, in terms of their properties, are closer to vanadium nitrides than to oxides, due to the intended low supply of oxygen during deposition. For instance, the film is more metallic than semi-conductive with dark appurtenance and high optical absorbance across the spectrum between 200 and 900 nm. For practical purposes, the deposition conditions of O2:N2 = 1/20, O2 < 0.25 sccm, and 600 °C annealing are recommended to obtain vanadium oxynitride films with relatively lower resistivity (10−2 Ω cm) and optical transmittance (<15%) through films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.