Chemostat cultivation mode imposes selective pressure on the cells, which may result in slow adaptation in the physiological state over time. We applied a two‐compartment scale‐down chemostat system imposing feast–famine conditions to characterize the long‐term (100 s of hours) response of Saccharomyces cerevisiae to fluctuating glucose availability. A wild‐type strain and a recombinant strain, expressing an insulin precursor, were cultured in the scale‐down system, and analyzed at the physiological and proteomic level. Phenotypes of both strains were compared with those observed in a well‐mixed chemostat. Our results show that S. cerevisiae subjected to long‐term chemostat conditions undergoes a global reproducible shift in its cellular state and that this transition occurs faster and is larger in magnitude for the recombinant strain including a significant decrease in the expression of the insulin product. We find that the transition can be completely avoided in the presence of fluctuations in glucose availability as the strains subjected to feast–famine conditions under otherwise constant culture conditions exhibited constant levels of the measured proteome for over 250 hr. We hypothesize possible mechanisms responsible for the observed phenotypes and suggest experiments that could be used to test these mechanisms.
Growth decoupling can be used to optimize the production of biochemicals and proteins in cell factories. Inhibition of excess biomass formation allows for carbon to be utilized efficiently for product formation instead of growth, resulting in increased product yields and titers. Here, we used CRISPR interference to increase the production of a single-domain antibody (sdAb) by inhibiting growth during production. First, we screened 21 sgRNA targets in the purine and pyrimidine biosynthesis pathways and found that the repression of 11 pathway genes led to the increased green fluorescent protein production and decreased growth. The sgRNA targets pyrF, pyrG, and cmk were selected and further used to improve the production of two versions of an expression-optimized sdAb. Proteomics analysis of the sdAbproducing pyrF, pyrG, and cmk growth decoupling strains showed significantly decreased RpoS levels and an increase of ribosome-associated proteins, indicating that the growth decoupling strains do not enter stationary phase and maintain their capacity for protein synthesis upon growth inhibition. Finally, sdAb production was scaled up to shake-flask fermentation where the product yield was improved 2.6-fold compared to the control strain with no sgRNA target sequence. An sdAb content of 14.6% was reached in the best-performing pyrG growth decoupling strain.
In the biotechnological industry, economic decisions in investment are typically based on laboratory-scale experiments. Scale-down as a tool is therefore of high industrial importance to transfer the processes into larger production scale without loss in performance. In this study, large-scale prolonged continuous cultivations with a heterologous protein producing Saccharomyces cerevisiae strain have been scaled-down to a two-compartment scale-down reactor system. The effects of glucose, pH, and oxygen concentration gradients have been investigated by comparison with corresponding 300 mL standard continuous cultivations. It was found that substrate gradients within a limited range result in increased productivity of the heterologous protein under regulation of glycolytic TPI promoter and delay the decrease of protein and trehalose production during continuous cultivation. Based on these results, it is argued that introduction of variations in substrate concentration can be beneficial for industrial continuous cultivations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.