We establish the interior and boundary Hölder continuity of possibly sign-changing solutions to a class of doubly nonlinear parabolic equations whose prototype isThe proof relies on the property of expansion of positivity and the method of intrinsic scaling, all of which are realized by De Giorgi's iteration. Our approach, while emphasizing the distinct roles of sub(super)-solutions, is flexible enough to obtain the Hölder regularity of solutions to initial-boundary value problems of Dirichlet type or Neumann type in a cylindrical domain, up to the parabolic boundary. In addition, based on the expansion of positivity, we are able to give an alternative proof of Harnack's inequality for non-negative solutions. Moreover, as a consequence of the interior estimates, we also obtain a Liouville-type result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.