Summary:Purpose: To study the short-term effects of vagus nerve stimulation (VNS) on brain activation and cerebral blood flow by using functional magnetic resonance imaging (fMRI).Methods: Five patients (three women, two men; mean age, 35.4 years) who were treated for medically refractory epilepsy with VNS, underwent fMRI. All patients had a nonfocal brain MRI. The VNS was set at 30 Hz, 0.5-2.0 mA for intervals of activation of 30 s on and 30 s off, during which the fMRI was performed. Statistical parametric mapping (SPM) was used to determine significant areas of activation or inhibition during vagal nerve stimulation (p < 0.05).Results: VNS-induced activation was detected in the thalami bilaterally (left more than right), insular cortices bilaterally, ipsilateral basal ganglia and postcentral gyri, right posterior superior temporal gyrus, and inferomedial occipital gyri (left more than right). The most robust activation was seen in the thalami (left more than right) and insular cortices. Conclusions: VNS-induced thalamic and insular cortical activation during fMRI suggests that these areas may play a role in modulating cerebral cortical activity, and the observed decrease in seizure frequency in patients who are given VNS may be a consequence of this increased activation.
The fetal brain remains inaccessible to neurophysiological studies. Magnetoencephalography (MEG) is being assessed to fill this gap. We performed 40 fetal MEG (fMEG) recordings with gestational ages (GA) ranging from 30 to 37 weeks. The data from each recording were divided into 15 second epochs which in turn were classified as continuous (CO), discontinuous (DC), or artifact. The fetal behavioral state, quiet or active sleep, was determined using previously defined criteria based on fetal movements and heart rate variability. We studied the correlation between the fetal state, the GA and the percentage of CO and DC epochs. We also analyzed the Spectral Edge Frequency (SEF) and studied its relation with state and GA. We found that the odds of a DC epoch decreased by 6% per week as the GA increased (P=0.0036). This decrease was mainly generated by changes during quiet sleep, which showed 52% DC epochs before 35 weeks GA versus 38% after 35 weeks (P=0.0006). Active sleep did not show a significant change in DC epochs with GA. When both states were compared for MEG patterns within each GA group (before and after 35 weeks), the early group was found to have more DC epochs in quiet sleep (54%) compared to active sleep (42%) (P=0.036). No significant difference in DC epochs between the two states was noted in the late GA group. Analysis of SEF showed a significant difference (P=0.0014) before and after 35 weeks GA, with higher SEF noted at late GA. However, when both quiet and active sleep states were compared within each GA group, the SEF did not show a significant difference. We conclude that fMEG shows reproducible variations in gross features and frequency content, depending on GA and behavioral state. Fetal MEG is a promising tool to investigate fetal brain physiology and maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.