The formation of scale on surfaces in contact with water is due to many reasons as the hardness of water and its temperature. Therefore, this phenomenon of scale in water pipelines is a common and inevitable problem in the regions that exploit or use groundwater with high rigidity. The circuits fed by hot water are easily reached by hard water scaling. The deposition of encrusting curst at the level of walls in touch with water is due to many technical, economic and environmental problems. It causes a reduction in water flow and a decrease in the efficiency of heating systems.In this study, we are particularly interested in studying the phenomenon of hard water scaling caused by sanitary hot water in a tourist unit situated in the north of the seaside in the city of Agadir. First, we have evaluated the physico-chemical quality of water in use in this tourist unit. Secondly, we conducted a qualitative and quantitative analysis of the scale found in the circuits that transport sanitary hot water. Several analytical techniques were used to reach this goal namely: X-ray fluorescence (XRF) which shows that 85.50% of scale is represented by Calcium Carbonate. Whereas infrared spectrometry (IR) demonstrates the existence of the Carbonate anion CO32-. In addition, due to thermogravimetric analysis (TGA) and differential thermal analysis (DTA) we found that the endothermic event shows the decomposition of Calcium Carbonate of CaO and CO2 in the temperature range of 660 C° to 820 C°. For scanning electron microscopy (SEM), it indicates that the scale takes the form of needle-like aragonite crystals. At last, the X-ray diffraction (XRD) shows that the scale is composed essentially of Calcium Carbonate of the type aragonite.The results of the different techniques of characterisation are in concordance in the scaling of the circuits of sanitary hot water in the tourist unit under study.
The nontoxicity, worldwide availability and low production cost of cuttlefish bone products qualify them an excellent biocoagulant to treat food industry wastewater. In this study, cuttlefish bone liquid waste from the deproteinization step was used as a biocoagulant to treat food industry wastewater. This work concerns a waste that has never before been investigated. The objectives of this work were: the recovery of waste resulting from cuttlefish bone deproteinization, the replacementof chemical coagulants with natural ones to preserve the environment, and the enhancement ofthe value of fishery byproducts. A quantitative characterization of the industrial effluents of a Moroccan food processing plant was performed. The physicochemical properties of the raw cuttlefish bone powder and the deproteinization liquid extract were determined using specific analysis techniques: SEM/EDX, FTIR, XRD and 1H-NMR. The protein content of the deproteinization liquid was determined by OPA fluorescent assay. The zeta potential of the liquid extract was also determined. The obtained analytical results showed that the deproteinization liquid waste contained an adequate amount of soluble chitin fractions that could be used in food wastewater treatment. The effects of the coagulant dose and pH on the food industrial effluents were studied to confirm the effectiveness of the deproteinization liquid extract. Under optimal conditions, the coagulant showed satisfactory results. Process optimization was performed using the Box–Behnken design and response surface methodology. Thus, the optimal removal efficiencies predicted using this model for turbidity (99.68%), BOD5 (97.76%), and COD (82.92%) were obtained at a dosage of 8 mL biocoagulant in 0.5 L of food processing wastewater at an alkaline pH of 11.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.